311 research outputs found
Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.
Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain
A family case of fertile human 45,X,psu dic(15;Y) males
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family
Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses
Human MMP-1 is a matrix metalloproteinase repeatedly associated with many pathological conditions, including cancer. Thus, MMP1 overexpression is a poor prognosis marker in a variety of advanced cancers, including colorectal, breast, and lung carcinomas. Moreover, MMP-1 plays a key role in the metastatic behavior of melanoma, breast, and prostate cancer cells. However, functional and mechanistic studies on the relevance of MMP-1 in cancer have been hampered by the absence of an in vivo model. In this work, we have generated mice deficient in Mmp1a, the murine ortholog of human MMP1. Mmp1a(−/−) mice are viable and fertile and do not exhibit obvious abnormalities, which has facilitated studies of cancer susceptibility. These studies have shown a decreased susceptibility to develop lung carcinomas induced by chemical carcinogens in Mmp1a(−/−) mice. Histopathological analysis indicated that tumors generated in Mmp1a(−/−) mice are smaller than those of wild-type mice, consistently with the idea that the absence of Mmp-1a hampers tumor progression. Proteomic analysis revealed decreased levels of chitinase-3-like 3 and accumulation of the receptor for advanced glycation end-products and its ligand S100A8 in lung samples from Mmp1a(−/−) mice compared with those from wild-type. These findings suggest that Mmp-1a could play a role in tumor progression by modulating the polarization of a Th1/Th2 inflammatory response to chemical carcinogens. On the basis of these results, we propose that Mmp1a knock-out mice provide an excellent in vivo model for the functional analysis of human MMP-1 in both physiological and pathological conditions
Exploring the Dietary, Lifestyle, and Demographic Factors Associated with Risk for Colorectal Cancer and Colorectal Abnormalities in a Fecal Immunochemical Test-Positive Population: A Cross-Sectional Study in the Kingdom of Bahrain
Background/Objectives: Colorectal cancer incidence in Bahrain occurs at a ratio of 13.4–18.8 per 100,000 persons after age standardization. This study aims to explore the relationship between colorectal cancer/abnormalities and different lifestyle factors. Secondly, it aims to explore the association between f-Hb levels, colonoscopy findings, and lifestyle factors in a FIT-positive population in Bahrain. Method: A retrospective cross-sectional study was performed for patients positive for FIT and who had a colonoscopy. Different dietary and demographic factors as well as f-Hb levels were assessed. Results: A total of 559 (M: 330; F: 229) subjects were enrolled in this study. Subjects with CRC had significantly higher f-Hb concentrations (median: 1269 μg/mg) when compared with subjects of other groups. Higher percentages of CRC as well as large and small polyps were recorded in males. However, there was no significant difference in f-Hb concentration between males and females (p = 0.90). Higher median levels were found for f-Hb in patients with Q3 (higher red meat consumption) compared to Q1 and Q2 in the category with CRC, despite there being no statistically significant differences among the groups (p = 0.742). Similar results for coffee consumption and f-Hb concentrations in the different groups have been recorded (p = 0.697). A higher quartile of red meat consumption was associated with an increase in CRC risk of 79.9%. Coffee consumption reflected a lower risk of CRC by −47% moving from Q1 to Q2, while BMI was found to be a risk factor (+44%) for CRC. Conclusion: This study highlighted that high f-Hb concentration can be used as a predictive biomarker of CRC
Predictors of Nodal and Metastatic Failure in Early Stage Non-Small Cell Lung Cancer after Stereotactic Body Radiation Therapy
Introduction/Background
Many early-stage non-small cell lung cancer (ES-NSCLC) patients undergoing stereotactic body radiation therapy (SBRT) develop metastases, which is associated with poor outcomes. We sought to identify factors predictive of metastases after lung SBRT and created a risk stratification tool.
Materials and Methods
We included 363 patients with ES-NSCLC who received SBRT; median follow-up was 5.8 years. The following patient and tumor factors were retrospectively analyzed for their association with metastases (defined as nodal and/or distant failure): sex; age; lobe involved; centrality; previous NSCLC; smoking status; gross tumor volume (GTV); T-stage; histology; dose; minimum, maximum, and mean GTV dose; and parenchymal lung failure. A metastasis risk-score linear-model using beta coefficients from a multivariate Cox model was built.
Results
A total of 111/406 (27.3%) lesions metastasized. GTV volume and dose were significantly associated with metastases on univariate and multivariate Cox proportional hazards modeling (p<0.001 and HR=1.02 per mL, p<0.05 and HR=0.99 per Gy, respectively). Histology, T-stage, centrality, lung parenchymal failures, and previous NSCLC were not associated with development of metastasis. A metastasis risk-score model using GTV volume and prescription dose was built: [risk score=(0.01611 x GTV)–(0.00525 x dose (BED10))]. Two risk-score cutoffs separating the cohort into low-, medium-, and high-risk subgroups were examined. The risk-score identified significant differences in time to metastases between low-, medium-, and high-risk patients (p<0.001), with 3-year estimates of 81.1%, 63.8%, and 38%, respectively.
Conclusion
GTV volume and radiation dose are associated with time to metastasis and may be used to identify patients at higher risk of metastasis after lung SBRT
Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age
<p>Abstract</p> <p>Background</p> <p>Glioblastomas are the most common primary brain tumour in adults. While the prognosis for patients is poor, gene expression profiling has detected signatures that can sub-classify GBMs relative to histopathology and clinical variables. One category of GBM defined by a gene expression signature is termed ProNeural (PN), and has substantially longer patient survival relative to other gene expression-based subtypes of GBMs. Age of onset is a major predictor of the length of patient survival where younger patients survive longer than older patients. The reason for this survival advantage has not been clear.</p> <p>Methods</p> <p>We collected 267 GBM CEL files and normalized them relative to other microarrays of the same Affymetrix platform. 377 probesets on U133A and U133 Plus 2.0 arrays were used in a gene voting strategy with 177 probesets of matching genes on older U95Av2 arrays. Kaplan-Meier curves and Cox proportional hazard analyses were applied in distinguishing survival differences between expression subtypes and age.</p> <p>Results</p> <p>This meta-analysis of published data in addition to new data confirms the existence of four distinct GBM expression-signatures. Further, patients with PN subtype GBMs had longer survival, as expected. However, the age of the patient at diagnosis is not predictive of survival time when controlled for the PN subtype.</p> <p>Conclusion</p> <p>The survival benefit of younger age is nullified when patients are stratified by gene expression group. Thus, the main cause of the age effect in GBMs is the more frequent occurrence of PN GBMs in younger patients relative to older patients.</p
Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis) - A Comparative Analysis
This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement:
The result-supporting data presented in this study are available in the main text. Additional data are available in the appendices section.Nuts are dry, single-seeded fruits with a combination of beneficial compounds that aid in disease prevention and treatment. The aims of this research are to evaluate the total antioxidant activity (AI) by ferric reducing antioxidant power (FRAP) assay, fatty acids by acid-catalyzed esterification method, and minerals by inductively coupled plasma optical emission (ICP-OE) spectrometer in hazelnuts, pistachios, and almond seeds and skins. Considering total AI, the results demonstrated that the highest activity was found in hazelnut and pistachio skin. The results considering minerals demonstrated that manganese, zinc, and iron levels are high in almond and hazelnut skins, copper is dominant in pistachio skin and hazelnut seed, and selenium is high in pistachio and almond skins and seed. Finally, the results showed palmitic acid is present in almond skin and pistachio seed, palmitoleic acid is high in almond and pistachio skins, and stearic acid is present in almond and hazelnut skins. Oleic acid was found in hazelnut seeds and their skin, linoleic acid in almond skin and pistachio seeds, and α-linolenic acid in almond and pistachio skins. In conclusion, hazelnut, pistachio, and almond skins are a great source of antioxidants, minerals, and healthy fatty acids, making them useful for nutraceutical development
Eighteen Years of Molecular Genotyping the Hemophilia Inversion Hotspot: From Southern Blot to Inverse Shifting-PCR
The factor VIII gene (F8) intron 22 inversion (Inv22) is a paradigmatic duplicon-mediated rearrangement, found in about one half of patients with severe hemophilia A worldwide. The identification of this prevalent cause of hemophilia was delayed for nine years after the F8 characterization in 1984. The aim of this review is to present the wide diversity of practical approaches that have been developed for genotyping the Inv22 (and related int22h rearrangements) since discovery in 1993. The sequence— Southern blot, long distance-PCR and inverse shifting-PCR—for Inv22 genotyping is an interesting example of scientific ingenuity and evolution in order to resolve challenging molecular diagnostic problems
Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis
The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention
Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy
The development of DNA microarray technologies over the past decade has revolutionised translational cancer research. These technologies were originally hailed as more objective, comprehensive replacements for traditional histopathological cancer classification systems, based on microscopic morphology. Although DNA microarray-based gene expression profiling (GEP) remains unlikely in the near term to completely replace morphological classification of primary brain tumours, specifically the diffuse gliomas, GEP has confirmed that significant molecular heterogeneity exists within the various morphologically defined gliomas, particularly glioblastoma (GBM). Herein, we provide a 10-year progress report on human glioma GEP, with focus on development of clinical diagnostic tests to identify molecular subtypes, uniquely responsive to adjuvant therapies. Such progress may lead to a more precise classification system that accurately reflects the cellular, genetic, and molecular basis of gliomagenesis, a prerequisite for identifying subsets uniquely responsive to specific adjuvant therapies, and ultimately in achieving individualised clinical care of glioma patients
- …
