3,864 research outputs found

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Performance evaluation of wheels for lunar vehicles

    Get PDF
    Performance evaluation of wheels for lunar vehicle

    Harvesting Entities from the Web Using Unique Identifiers -- IBEX

    Full text link
    In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with human-readable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.Comment: 30 pages, 5 figures, 9 tables. Complete technical report for A. Talaika, J. A. Biega, A. Amarilli, and F. M. Suchanek. IBEX: Harvesting Entities from the Web Using Unique Identifiers. WebDB workshop, 201

    Initial Populations of Black Holes in Star Clusters

    Full text link
    Using an updated population synthesis code we study the formation and evolution of black holes (BHs) in young star clusters following a massive starburst. This study continues and improves on the initial work described by Belczynski, Sadowski & Rasio (2004). In our new calculations we account for the possible ejections of BHs and their progenitors from clusters because of natal kicks imparted by supernovae and recoil following binary disruptions. The results indicate that the properties of both retained BHs in clusters and ejected BHs (forming a field population) depend sensitively on the depth of the cluster potential. In particular, most BHs ejected from binaries are also ejected from clusters with central escape speeds Vesc < 100 km/s. Conversely, most BHs remaining in binaries are retained by clusters with Vesc > 50 km/s. BHs from single star evolution are also affected significantly: about half of the BHs originating from primordial single stars are ejected from clusters with Vesc < 50 km/s. Our results lay a foundation for theoretical studies of the formation of BH X-ray binaries in and around star clusters, including possible ultra-luminous sources, as well as merging BH--BH binaries detectable with future gravitational-wave observatories.Comment: 35 pages, 8 tables, 17 figures; resubmitted to ApJ (revised version

    Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes

    Full text link
    The carrier density and temperature dependence of the Hall mobility in mono-, bi- and tri-layer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for mono-layer graphene, while it increases for bi-layer/tri-layer graphene. This can be explained by the different density of states in mono-layer and bi-layer/tri-layer graphenes. In mono-layer, the mobility also decreases with increasing temperature primarily due to surface polar substrate phonon scattering. In bi-layer/tri-layer graphene, on the other hand, the mobility increases with temperature because the field of the substrate surface phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in mono-, bi- and tri-layer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of mono-, bi- and tri-layer graphene. The electrostatic potential variations across the different graphene samples are extracted.Comment: 18 pages, 7 figure

    Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO

    Get PDF
    Gravitational waves (GWs) from the inspiral of a neutron star (NS) or stellar-mass black hole (BH) into an intermediate-mass black hole (IMBH) with mass between ~50 and ~350 solar masses may be detectable by the planned advanced generation of ground-based GW interferometers. Such intermediate mass ratio inspirals (IMRIs) are most likely to be found in globular clusters. We analyze four possible IMRI formation mechanisms: (1) hardening of an NS-IMBH or BH-IMBH binary via three-body interactions, (2) hardening via Kozai resonance in a hierarchical triple system, (3) direct capture, and (4) inspiral of a compact object from a tidally captured main-sequence star; we also discuss tidal effects when the inspiraling object is an NS. For each mechanism we predict the typical eccentricities of the resulting IMRIs. We find that IMRIs will have largely circularized by the time they enter the sensitivity band of ground-based detectors. Hardening of a binary via three-body interactions, which is likely to be the dominant mechanism for IMRI formation, yields eccentricities under 10^-4 when the GW frequency reaches 10 Hz. Even among IMRIs formed via direct captures, which can have the highest eccentricities, around 90% will circularize to eccentricities under 0.1 before the GW frequency reaches 10 Hz. We estimate the rate of IMRI coalescences in globular clusters and the sensitivity of a network of three Advanced LIGO detectors to the resulting GWs. We show that this detector network may see up to tens of IMRIs per year, although rates of one to a few per year may be more plausible. We also estimate the loss in signal-to-noise ratio that will result from using circular IMRI templates for data analysis and find that, for the eccentricities we expect, this loss is negligible.Comment: Accepted for publication in ApJ; revised version reflects changes made to the article during the acceptance proces

    Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale

    Get PDF
    This work presents a method of mapping deformation-related sublimation patterns, formed on the surface of ice specimens, at microscopic resolution (3-4 gm pixel(-1)). The method is based on the systematic sublimation of a microtomed piece of ice, prepared either as a thick or a thin section. The mapping system consists of an optical microscope, a CCD video camera and a computer-controlled xy-stage. About 1500 images are needed to build a high-resolution mosaic map of a 4.5 x 9 cm section. Mosaics and single images are used to derive a variety of statistical data about air inclusions (air bubbles and air clathrate hydrates), texture (grain size, shape and orientation) and deformation-related features (subgrain boundaries, slip bands, subgrain islands and loops, pinned and bulged grain boundaries). The most common sublimation patterns are described, and their relevance for the deformation of polar ice is briefly discussed

    Post- and peritraumatic stress in disaster survivors: An explorative study about the influence of individual and event characteristics across different types of disasters

    Get PDF
    Background: Examination of existing research on posttraumatic adjustment after disasters suggests that survivors’ posttraumatic stress levels might be better understood by investigating the influence of the characteristics of the event experienced on how people thought and felt, during the event as well as afterwards. Objective: To compare survivors’ perceived post- and peritraumatic emotional and cognitive reactions across different types of disasters. Additionally, to investigate individual and event characteristics. Design: In a European multi-centre study, 102 survivors of different disasters terror attack, flood, fire and collapse of a building were interviewed about their responses during the event. Survivors’ perceived posttraumatic stress levels were assessed with the Impact of Event Scale-Revised (IES-R). Peritraumatic emotional stress and risk perception were rated retrospectively. Influences of individual characteristics, such as socio-demographic data, and event characteristics, such as time and exposure factors, on post- and peritraumatic outcomes were analyzed. Results: Levels of reported post- and peritraumatic outcomes differed significantly between types of disasters. Type of disaster was a significant predictor of all three outcome variables but the factors gender, education, time since event, injuries and fatalities were only significant for certain outcomes. Conclusion: Results support the hypothesis that there are differences in perceived post- and peritraumatic emotional and cognitive reactions after experiencing different types of disasters. However, it should be noted that these findings were not only explained by the type of disaster itself but also by individual and event characteristics. As the study followed an explorative approach, further research paths are discussed to better understand the relationships between variables
    corecore