824 research outputs found

    Rapid genetic divergence in response to 15 years of simulated climate change

    Get PDF
    Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long-term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community-level responses to long-term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL

    Building stock dynamics and its impacts on materials and energy demand in China

    Get PDF
    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China

    Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change

    Get PDF
    Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation

    Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Get PDF
    We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons

    Support materials for the use of Pygraphic\u27s The music writer in the beginning music theory class at Sacramento High School Visual and Performing Arts Center : in partial fulfillment ...

    Get PDF
    The objective of this project was to develop the necessary materials to facilitate the use of The Music Writer in the music theory class of Sacramento High School’s Visual and Performing Arts Center. The materials were designed to correct the deficiencies in the programs’ documentation, and include tutorials that sequentially introduce beginning students to the basic features of the program. The course is designed to teach skills and techniques in music fundamentals while providing students with practical experience involving the current technological advances in the field. These materials will enable the students to utilize professional level software in their study of basic music theory. Specifically, they will be able to use the program to write a simple diatonic melody, which has been composed as an assignment for the course

    Application of Dynamic System Identification to Timber Beams - part I

    Full text link
    In this first part of a two-part paper, development of a method of dynamic system identification for timber beams is presented with an analytical verification of the method using a finite-element model. A method of global nondestructive evaluation for identifying local damage and decay in timber beams is investigated in this paper. Experimental modal analysis is used in conjunction with a previously developed damage localization algorithm. The damage localization algorithm utilizes changes in modal strain energy between the mode shapes of a calibrated model, representing the undamaged state of the beam of interest, and the experimentally obtained mode shapes for a timber beam. Analytical evaluations were performed to demonstrate and verify the use of this method of global nondestructive evaluation for the localization of damage or decay in timber beams. In a companion paper, experimental laboratory tests are presented that verify the use of dynamic system identification to locate damage within timber beams

    Integrative Gene Set Analysis: Application to Platinum Pharmacogenomics

    Get PDF
    Integrative genomics has the potential to uncover relevant loci, as clinical outcome and response to chemotherapies are most likely not due to a single gene (or data type) but rather a complex relationship involving genetic variation, mRNA, DNA methylation, and copy number variation. In addition to this complexity, many complex phenotypes are thought to be controlled by the interplay of multiple genes within the same molecular pathway or gene set (GS). To address these two challenges, we propose an integrative gene set analysis approach and apply this strategy to a cisplatin (CDDP) pharmacogenomics study involving lymphoblastoid cell lines for which genome-wide SNP and mRNA expression data was collected. Application of the integrative GS analysis implicated the role of the RNA binding and cytoskeletal part GSs. The genes LMNB1 and CENPF, within the cytoskeletal part GS, were functionally validated with siRNA knockdown experiments, where the knockdown of LMNB1 and CENPF resulted in CDDP resistance in multiple cancer cell lines. This study demonstrates the utility of an integrative GS analysis strategy for detecting novel genes associated with response to cancer therapies, moving closer to tailored therapy decisions for cancer patients.National Institutes of Health (U.S.) (NIH/NCI GM61388)National Institutes of Health (U.S.) (NIH/NCI CA140879)National Institutes of Health (U.S.) (NIH/NCI GM86689)National Institutes of Health (U.S.) (NIH/NCI CA130828)National Institutes of Health (U.S.) (NIH/NCI CA138461)National Institutes of Health (U.S.) (NIH/NCI CA102701)Mayo Foundation for Medical Education and Researc
    corecore