782 research outputs found

    All Optical Formation of an Atomic Bose-Einstein Condensate

    Full text link
    We have created a Bose-Einstein condensate of 87Rb atoms directly in an optical trap. We employ a quasi-electrostatic dipole force trap formed by two crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled cloud of atoms results in initial phase space densities of ~1/200. Evaporatively cooling through the BEC transition is achieved by lowering the power in the trapping beams over ~ 2 s. The resulting condensates are F=1 spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality

    Get PDF
    A dense gas of cesium atoms at the crossover to two-dimensionality is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100nK are reached with 20.000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions

    Quantum entanglement using trapped atomic spins

    Get PDF
    We propose an implementation for quantum logic and computing using trapped atomic spins of two different species, interacting via direct magnetic spin-spin interaction. In this scheme, the spins (electronic or nuclear) of distantly spaced trapped neutral atoms serve as the qubit arrays for quantum information processing and storage, and the controlled interaction between two spins, as required for universal quantum computing, is implemented in a three step process that involves state swapping with a movable auxiliary spin.Comment: minor revisions with an updated discussion on adibatic tranportation of trapped qubit, 5 pages, 3 figs, resubmitted to PR

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    Multiple micro-optical atom traps with a spherically aberrated laser beam

    Full text link
    We report on the loading of atoms contained in a magneto-optic trap into multiple optical traps formed within the focused beam of a CO_{2} laser. We show that under certain circumstances it is possible to create a linear array of dipole traps with well separated maxima. This is achieved by focusing the laser beam through lenses uncorrected for spherical aberration. We demonstrate that the separation between the micro-traps can be varied, a property which may be useful in experiments which require the creation of entanglement between atoms in different micro-traps. We suggest other experiments where an array of these traps could be useful.Comment: 10 pages, 3 figure

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4μ4 \muK at full trap depth, where the Fermi temperature for each state is 8μ8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    Resolved-sideband Raman cooling to the ground state of an optical lattice

    Full text link
    We trap neutral Cs atoms in a two-dimensional optical lattice and cool them close to the zero-point of motion by resolved-sideband Raman cooling. Sideband cooling occurs via transitions between the vibrational manifolds associated with a pair of magnetic sublevels and the required Raman coupling is provided by the lattice potential itself. We obtain mean vibrational excitations \bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim 98% in the vibrational ground state. Atoms in the ground state of an optical lattice provide a new system in which to explore quantum state control and subrecoil laser coolingComment: PDF file, 13 pages including 3 figure

    Fictitious Magnetic Resonance by Quasi-Electrostatic Field

    Full text link
    We propose a new kind of spin manipulation method using a {\it fictitious} magnetic field generated by a quasi-electrostatic field. The method can be applicable to every atom with electron spins and has distinct advantages of small photon scattering rate and local addressability. By using a CO2\rm{CO_2} laser as a quasi-electrostatic field, we have experimentally demonstrated the proposed method by observing the Rabi-oscillation of the ground state hyperfine spin F=1 of the cold 87Rb\rm{^{87}Rb} atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure

    Nonperturbative and perturbative treatments of parametric heating in atom traps

    Get PDF
    We study the quantum description of parametric heating in harmonic potentials both nonperturbatively and perturbatively, having in mind atom traps. The first approach establishes an explicit connection between classical and quantum descriptions; it also gives analytic expressions for properties such as the width of fractional frequency parametric resonances. The second approach gives an alternative insight into the problem and can be directly extended to take into account nonlinear effects. This is specially important for shallow traps.Comment: 12 pages, 2 figure
    corecore