10,462 research outputs found
Physical picture for the anomalous progagation of ordinary electromagnetic waves in a plasma
It is shown that the physical mechanism for the anomalous propagation of electromagnetic waves at frequencies below the plasma frequency is due to the deflection of particle thermal motions by the wave magnetic field, leading to a density perturbation which can be large when enhanced by some resonance. In presence of an external magnetic field, cyclotron resonance provides the enhancement for ordinary waves. A waveparticle resonance gives rise to anomalous propagation if the velocity distribution is anisotropic with respect to the wave vector, which allows slow electromagnetic waves, with phase velocity less than the velocity of light
Effect of a surface tension imbalance on a partly submerged cylinder
We perform a static analysis of a circular cylinder that forms a barrier
between surfactant-laden and surfactant-free portions of a liquidgas
interface. In addition to determining the general implications of the balances
for forces and torques, we quantify how the imbalance
between the uniform surface tension
of the surfactant-free portion of the interface and the uniform surface tension
of the surfactant-laden portion of the interface influences the
load-bearing capacity of a hydrophobic cylinder. Moreover, we demonstrate that
the difference between surface tensions on either side of a cylinder with a
cross-section of arbitrary shape induces a horizontal force component
equal to in magnitude, when measured per unit length of the
cylinder. With an energetic argument, we show that this relation also applies
to rod-like barriers with cross-sections of variable shape. In addition, we
apply our analysis to amphiphilic Janus cylinders and we discuss practical
implications of our findings for Marangoni propulsion and surface pressure
measurements
Alternating groups and moduli space lifting Invariants
Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of
degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves
Fried-Serre on deciding when sphere covers with odd-order branching lift to
unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on
Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces
of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp.
odd) theta functions when r is even (resp. odd). For inner spaces the result is
independent of r. Another use appears in,
http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of
families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for
the prime p=2 lying over Hurwitz spaces first studied by,
http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and
Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*)
High tower levels are general-type varieties and have no rational points.For
infinitely many of those MTs, the tree of cusps contains a subtree -- a spire
-- isomorphic to the tree of cusps on a modular curve tower. This makes
plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs.
Establishing these modular curve-like properties opens, to MTs, modular
curve-like thinking where modular curves have never gone before. A fuller html
description of this paper is at
http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from
proof sheets, but does include some proof simplification in \S
Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates
It is demonstrated that non-coalescent droplets of acetone can be formed on
liquid substrates. The fluid flows around and in an acetone droplet hovering on
water are recorded to shed light on the mechanisms which might lead to
non-coalescence. For sufficiently low impact velocities, droplets undergo a
damped oscillation on the surface of the liquid substrate but at higher
velocities clean bounce-off occurs. Comparisons of experimentally observed
static configurations of floating droplets to predictions from a theoretical
model for a small non-wetting rigid sphere resting on a liquid substrate are
made and a tentative strategy for determining the thickness of the vapor layer
under a small droplet on a liquid is proposed. This strategy is based on the
notion of effective surface tension. The droplets show self-propulsion in
straight line trajectories in a manner which can be ascribed to a Marangoni
effect. Surprisingly, self-propelled droplets can become immersed beneath the
undisturbed water surface. This phenomenon is reasoned to be drag-inducing and
might provide a basis for refining observations in previous work
A Side of Mercury Not Seen By Mariner 10
More than 60,000 images of Mercury were taken at ~29 deg elevation during two
sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the
SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg
longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary
phase angles to previous ground-based optical imagery. Our view is comparable
to that of the Moon through weak binoculars. Evident are the large crater
Mozart shadowed on the terminator, fresh rayed craters, and other albedo
features keyed to topography and radar reflectivity, including the putative
huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across
the northwest boundary of the Caloris basin into a bright splotch centered on a
sharp, 20 km diameter radar crater, and is the brightest feature within a
prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the
northern hemisphere between longitudes 140-250 deg. The cap may result from
space weathering that darkens via a magnetically enhanced flux of the solar
wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified
slightly to add crater diameters not given in published versio
- …
