1,595 research outputs found
Simple colorimetric method determines uranium in tissue
Simple colorimetric micromethod determines concentrations of uranium in tissue. The method involves dry ashing organic extraction, and colorimetric determination of uranyl ferrocyanide. This uranium determination technique could be used in agricultural research, tracer studies, testing of food products, or medical research
Ceric and ferrous dosimeters show precision for 50-5000 rad range
Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET
1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates
Electroluminescence from strained n-Ge quantum well light emitting diodes grown on a silicon substrate are demonstrated at room temperature. Electroluminescence characterisation demonstrates two peaks around 1.55 μm and 1.8 μm, which correspond to recombination between the direct and indirect transitions, respectively. The emission wavelength can be tuned by around 4% through changing the current density through the device. The devices have potential applications in the fields of optical interconnects, gas sensing, and healthcare
On the Incompatibility of Standard Quantum Mechanics and the de Broglie-Bohm Theory
It is shown that the de Broglie-Bohm quantum theory of multi-particle systems
is incompatible with the standard quantum theory of such systems unless the
former is ergodic. A realistic experiment is suggested to distinguish between
the two theories.Comment: A few technical changes incorporated in section V without any change
in conclusion
Monojet searches for momentum-dependent dark matter interactions
We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb−1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution
Alexander quandle lower bounds for link genera
We denote by Q_F the family of the Alexander quandle structures supported by
finite fields. For every k-component oriented link L, every partition P of L
into h:=|P| sublinks, and every labelling z of such a partition by the natural
numbers z_1,...,z_n, the number of X-colorings of any diagram of (L,z) is a
well-defined invariant of (L,P), of the form q^(a_X(L,P,z)+1) for some natural
number a_X(L,P,z). Letting X and z vary in Q_F and among the labellings of P,
we define a derived invariant A_Q(L,P)=sup a_X(L,P,z).
If P_M is such that |P_M|=k, we show that A_Q(L,P_M) is a lower bound for
t(L), where t(L) is the tunnel number of L. If P is a "boundary partition" of L
and g(L,P) denotes the infimum among the sums of the genera of a system of
disjoint Seifert surfaces for the L_j's, then we show that A_Q(L,P) is at most
2g(L,P)+2k-|P|-1. We set A_Q(L):=A_Q(L,P_m), where |P_m|=1. By elaborating on a
suitable version of a result by Inoue, we show that when L=K is a knot then
A_Q(K) is bounded above by A(K), where A(K) is the breadth of the Alexander
polynomial of K. However, for every g we exhibit examples of genus-g knots
having the same Alexander polynomial but different quandle invariants A_Q.
Moreover, in such examples A_Q provides sharp lower bounds for the genera of
the knots. On the other hand, A_Q(L) can give better lower bounds on the genus
than A(L), when L has at least two components.
We show that in order to compute A_Q(L) it is enough to consider only
colorings with respect to the constant labelling z=1. In the case when L=K is a
knot, if either A_Q(K)=A(K) or A_Q(K) provides a sharp lower bound for the knot
genus, or if A_Q(K)=1, then A_Q(K) can be realized by means of the proper
subfamily of quandles X=(F_p,*), where p varies among the odd prime numbers.Comment: 36 pages; 16 figure
Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si
CMOS-compatible, heavily-doped semiconductor
films are very promising for applications in mid-infrared
plasmonic devices because the real part of their dielectric
function is negative and broadly tunable in this wavelength
range. In this work we investigate n-type doped germanium
epilayers grown on Si substrates. We design and realize Ge nanoantennas
on Si substrates demonstrating the presence of localized
plasmon resonances, and exploit them for molecular sensing in
the mid-infrared
Peroxisome proliferator-activated receptor α (PPARα) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism
Aims/hypothesis: Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal insulin release and impaired glucose responses. The peroxisome proliferator-activated receptor α (PPARα) has been proposed to play a protective role in this process, although the cellular mechanisms involved are unclear. Methods: We modulated PPARα production in INS-1E beta cells and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3days in the presence of 0.4mmol/l oleate. Results: In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARα. Conversely, PPARα upregulation preserved glucose-stimulated insulin secretion, essentially by increasing the response at a stimulatory concentration of glucose (15mmol/l), a protection we also observed in human islets. The protective effect was associated with restored glucose oxidation rate and upregulation of the anaplerotic enzyme pyruvate carboxylase. PPARα overproduction increased both β-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. Conclusions/interpretation: PPARα protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnove
Low-Energy Thermal Leptogenesis in an Extended NMSSM Model
Thermal leptogenesis in the canonical seesaw model in supersymmetry suffers
from the incompatibility of a generic lower bound on the mass scale of the
lightest right-handed neutrino and the upper bound on the reheating temperature
of the Universe after inflation. This is resolved by adding an extra singlet
superfield, with a discrete symmetry, to the NMSSM (Next to Minimal
Supersymmetric Standard Model). This generic mechanism is applicable to any
supersymmetric model for lowering the scale of leptogenesis.Comment: 16 pages, revtex, 9 eps figure
Probing the seesaw mechanism with neutrino data and leptogenesis
In the framework of the seesaw mechanism with three heavy right-handed
Majorana neutrinos and no Higgs triplets we carry out a systematic study of the
structure of the right-handed neutrino sector. Using the current low-energy
neutrino data as an input and assuming hierarchical Dirac-type neutrino masses
, we calculate the masses and the mixing of the heavy neutrinos.
We confront the inferred properties of these neutrinos with the constraints
coming from the requirement of a successful baryogenesis via leptogenesis. In
the generic case the masses of the right-handed neutrinos are highly
hierarchical: ; the lightest mass is GeV and the generated baryon-to-photon ratio is
much smaller than the observed value. We find the special cases which
correspond to the level crossing points, with maximal mixing between two
quasi-degenerate right-handed neutrinos. Two level crossing conditions are
obtained: (1-2 crossing) and (2-3
crossing), where and are respectively the 11-entry and the
12-subdeterminant of the light neutrino mass matrix in the basis where the
neutrino Yukawa couplings are diagonal. We show that sufficient lepton
asymmetry can be produced only in the 1-2 crossing where GeV, GeV and .Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and
references) added on non-thermal leptogenesi
- …
