2,507 research outputs found
Magnetic and orbital order in overdoped bilayer manganites
The magnetic and orbital orders for the bilayer manganites in the doping
region have been investigated from a model that incorporates the
two orbitals at each Mn site, the inter-orbital Coulomb interaction and
lattice distortions. The usual double exchange operates via the orbitals.
It is shown that such a model reproduces much of the phase diagram recently
obtained for the bilayer systems in this range of doping. The C-type phase with
() spin order seen by Ling et al. appears as a natural consequence
of the layered geometry and is stabilised by the static distortions of the
system. The orbital order is shown to drive the magnetic order while the
anisotropic hopping across the orbitals, layered nature of the underlying
structure and associated static distortions largely determine the orbital
arrangements.Comment: 8 pages, 5 figure
Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe
Ferroelectrics with spontaneous electric polarization play an essential role
in today's device engineering, such as capacitors and memories. Their physical
properties are further enriched by suppressing the long-range polar order, as
is exemplified by quantum paraelectrics with giant piezoelectric and dielectric
responses at low temperatures. Likewise in metals, a polar lattice distortion
has been theoretically predicted to give rise to various unusual physical
properties. So far, however, a "ferroelectric"-like transition in metals has
seldom been controlled and hence its possible impacts on transport phenomena
remain unexplored. Here we report the discovery of anomalous enhancement of
thermopower near the critical region between the polar and nonpolar metallic
phases in 1T'-MoNbTe with a chemically tunable polar
transition. It is unveiled from the first-principles calculations and
magnetotransport measurements that charge transport with strongly
energy-dependent scattering rate critically evolves towards the boundary to the
nonpolar phase, resulting in large cryogenic thermopower. Such a significant
influence of the structural instability on transport phenomena might arise from
the fluctuating or heterogeneous polar metallic states, which would pave a
novel route to improving thermoelectric efficiency.Comment: 26 pages, 4 figure
Extracranial-intracranial bypass in atherosclerotic cerebrovascular disease: Report of a single centre experience
Despite the failure of the international extracranial-intracranial (EC-IC) bypass study in showing the benefit of bypass procedure for prevention of stroke recurrence, it has been regarded to be beneficial in a subgroup of well-selected patients with haemodynamic impairment. This report includes the EC-IC bypass experience of a single centre over a period of 14 years. All consecutive 72 patients with atherosclerotic occlusive cerebrovascular lesions associated with haemodynamic compromise treated by EC-IC bypass surgery were retrospectively reviewed. Pre-operatively, 61% of patients presented with minor stroke and the remaining 39% with recurrent transient ischemic attacks (TIAs) despite maximal medical therapy. Angiography revealed a unilateral internal carotid artery (ICA) stenosis/occlusion in 79%, bilateral ICA stenosis/occlusion in 15%, MCA stenosis/occlusion in 3% and other multiple vessel stenosis/occlusion in 3% of the cases. H(2)(15)O positron emission tomography (PET) or 99mTc-HMPAO SPECT with acetazolamide challenge was performed for haemodynamic evaluation of the cerebral blood flow (CBF). All the patients had impaired haemodynamics pre-operatively in terms of reduced regional cerebrovascular reserve capacity and rCBF. Standard STA-MCA bypass procedure was performed in all patients. A total of 68 patients with 82 bypasses were reviewed with a mean follow-up period of 34 months. Stroke recurrence took place in 10 patients (15%) resulting in an annual stroke risk of 5%. Improved cerebral haemodynamics was documented in 81% of revascularised hemispheres. Patients with unchanged or worse haemodynamic parameters had significantly more post-operative TIAs or strokes when compared to those with improved perfusion reserves (30% vs.5% of patients, p<0.05). In conclusion, EC-IC bypass procedure in selected patients with occlusive cerebrovascular lesions associated with haemodynamic impairment has revealed to be effective for prevention of further cerebral ischemia, when compared with a stroke risk rate of 15% reported to date in patients only under antiplatelet agents or anticoagulant therapy
Information Security as Strategic (In)effectivity
Security of information flow is commonly understood as preventing any
information leakage, regardless of how grave or harmless consequences the
leakage can have. In this work, we suggest that information security is not a
goal in itself, but rather a means of preventing potential attackers from
compromising the correct behavior of the system. To formalize this, we first
show how two information flows can be compared by looking at the adversary's
ability to harm the system. Then, we propose that the information flow in a
system is effectively information-secure if it does not allow for more harm
than its idealized variant based on the classical notion of noninterference
Standard and Embedded Solitons in Nematic Optical Fibers
A model for a non-Kerr cylindrical nematic fiber is presented. We use the
multiple scales method to show the possibility of constructing different kinds
of wavepackets of transverse magnetic (TM) modes propagating through the fiber.
This procedure allows us to generate different hierarchies of nonlinear partial
differential equations (PDEs) which describe the propagation of optical pulses
along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium
and derive an extended Nonlinear Schrodinger equation (eNLS) with a third order
derivative nonlinearity, governing the dynamics for the amplitude of the
wavepacket. In this derivation the dispersion, self-focussing and diffraction
in the nematic are taken into account. Although the resulting nonlinear
may be reduced to the modified Korteweg de Vries equation (mKdV), it also has
additional complex solutions which include two-parameter families of bright and
dark complex solitons. We show analytically that under certain conditions, the
bright solitons are actually double embedded solitons. We explain why these
solitons do not radiate at all, even though their wavenumbers are contained in
the linear spectrum of the system. Finally, we close the paper by making
comments on the advantages as well as the limitations of our approach, and on
further generalizations of the model and method presented.Comment: "Physical Review E, in press
Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides
We propose that the pseudogap state observed in the transition metal oxides
can be explained by a three-dimensional flux state, which exhibits
spontaneously generated currents in its ground state due to electron-electron
correlations. We compare the energy of the flux state to other classes of mean
field states, and find that it is stabilized over a wide range of and
. The signature of the state will be peaks in the neutron diffraction
spectra, the location and intensity of which are presented. The dependence of
the pseudogap in the optical conductivity is calculated based on the parameters
in the model.Comment: submitted to Phys. Rev. B on January 8, 200
25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity
We report on the spectral properties of a diode laser with a tunable external
cavity in integrated optics. Even though the external cavity is short compared
to other small-bandwidth external cavity lasers, the spectral bandwidth of this
tunable laser is as small as 25 kHz (FWHM), at a side-mode suppression ratio
(SMSR) of 50 dB. Our laser is also able to access preset wavelengths in as
little as 200 us and able to tune over the full telecom C-band (1530 nm - 1565
nm).Comment: 8 pages, 7 figure
- …
