9,694 research outputs found

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Quantum local asymptotic normality based on a new quantum likelihood ratio

    Get PDF
    We develop a theory of local asymptotic normality in the quantum domain based on a novel quantum analogue of the log-likelihood ratio. This formulation is applicable to any quantum statistical model satisfying a mild smoothness condition. As an application, we prove the asymptotic achievability of the Holevo bound for the local shift parameter.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1147 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Four-dimensional lattice chiral gauge theories with anomalous fermion content

    Full text link
    In continuum field theory, it has been discussed that chiral gauge theories with Weyl fermions in anomalous gauge representations (anomalous gauge theories) can consistently be quantized, provided that some of gauge bosons are permitted to acquire mass. Such theories in four dimensions are inevitablly non-renormalizable and must be regarded as a low-energy effective theory with a finite ultraviolet (UV) cutoff. In this paper, we present a lattice framework which enables one to study such theories in a non-perturbative level. By introducing bare mass terms of gauge bosons that impose ``smoothness'' on the link field, we explicitly construct a consistent fermion integration measure in a lattice formulation based on the Ginsparg-Wilson (GW) relation. This framework may be used to determine in a non-perturbative level an upper bound on the UV cutoff in low-energy effective theories with anomalous fermion content. By further introducing the St\"uckelberg or Wess-Zumino (WZ) scalar field, this framework provides also a lattice definition of a non-linear sigma model with the Wess-Zumino-Witten (WZW) term.Comment: 18 pages, the final version to appear in JHE

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.Comment: 9 pages, no figures. The framework presented in this article supersedes the one given in arXiv:1206.0260 by the first autho

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    Get PDF
    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t=0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform-density sphere, the phase-space evolution which the current method generates is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Then, excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs but needs no assumptions about symmetry of the system, the success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To be published in ApJ, Oct. 1, 1997. This preprint is also available at http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm

    Saari's homographic conjecture for planar equal-mass three-body problem under a strong force potential

    Full text link
    Donald Saari conjectured that the NN-body motion with constant configurational measure is a motion with fixed shape. Here, the configurational measure μ\mu is a scale invariant product of the moment of inertia I=kmkqk2I=\sum_k m_k |q_k|^2 and the potential function U=i<jmimj/qiqjαU=\sum_{i<j} m_i m_j/|q_i-q_j|^\alpha, α>0\alpha >0. Namely, μ=Iα/2U\mu = I^{\alpha/2}U. We will show that this conjecture is true for planar equal-mass three-body problem under the strong force potential i<j1/qiqj2\sum_{i<j} 1/|q_i-q_j|^2

    Long- and medium-range components of the nuclear force in quark-model based calculations

    Get PDF
    Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson-exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the 1F3, as a very sensitive probe for the meson-exchange part employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.Comment: 19 pages, 7 figure

    Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity

    Full text link
    Saari's homographic conjecture in N-body problem under the Newton gravity is the following; configurational measure \mu=\sqrt{I}U, which is the product of square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the motion is homographic. Where m_k represents mass of body k and r_{ij} represents distance between bodies i and j. We prove this conjecture for planar equal-mass three-body problem. In this work, we use three sets of shape variables. In the first step, we use \zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k. Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu and \rho make our proof simple
    corecore