6,702 research outputs found
Feature-based time-series analysis
This work presents an introduction to feature-based time-series analysis. The
time series as a data type is first described, along with an overview of the
interdisciplinary time-series analysis literature. I then summarize the range
of feature-based representations for time series that have been developed to
aid interpretable insights into time-series structure. Particular emphasis is
given to emerging research that facilitates wide comparison of feature-based
representations that allow us to understand the properties of a time-series
dataset that make it suited to a particular feature-based representation or
analysis algorithm. The future of time-series analysis is likely to embrace
approaches that exploit machine learning methods to partially automate human
learning to aid understanding of the complex dynamical patterns in the time
series we measure from the world.Comment: 28 pages, 9 figure
Highly comparative feature-based time-series classification
A highly comparative, feature-based approach to time series classification is
introduced that uses an extensive database of algorithms to extract thousands
of interpretable features from time series. These features are derived from
across the scientific time-series analysis literature, and include summaries of
time series in terms of their correlation structure, distribution, entropy,
stationarity, scaling properties, and fits to a range of time-series models.
After computing thousands of features for each time series in a training set,
those that are most informative of the class structure are selected using
greedy forward feature selection with a linear classifier. The resulting
feature-based classifiers automatically learn the differences between classes
using a reduced number of time-series properties, and circumvent the need to
calculate distances between time series. Representing time series in this way
results in orders of magnitude of dimensionality reduction, allowing the method
to perform well on very large datasets containing long time series or time
series of different lengths. For many of the datasets studied, classification
performance exceeded that of conventional instance-based classifiers, including
one nearest neighbor classifiers using Euclidean distances and dynamic time
warping and, most importantly, the features selected provide an understanding
of the properties of the dataset, insight that can guide further scientific
investigation
If only it were true: the problem with the four conditionals
The traditional division of conditionals into four main types (zero, first, second, and third) has long been called into question. Unfortunately, the awareness that this description does not reflect conditional patterns in actual usage has not generally been reflected in EFL coursebooks. This article re-examines the arguments for a description of conditional patterns which reflects actual usage and uses corpus data to demonstrate the kind of patterns in frequent use. It then suggests two teaching approaches that may help teachers to tackle a variety of conditional patterns in the classroom
Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene
The glass transition temperature and relaxation dynamics of the segmental
motions of thin films of polystyrene labeled with a dye,
4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are
investigated using dielectric measurements. The dielectric relaxation strength
of the DR1-labeled polystyrene is approximately 65 times larger than that of
the unlabeled polystyrene above the glass transition, while there is almost no
difference between them below the glass transition. The glass transition
temperature of the DR1-labeled polystyrene can be determined as a crossover
temperature at which the temperature coefficient of the electric capacitance
changes from the value of the glassy state to that of the liquid state. The
glass transition temperature of the DR1-labeled polystyrene decreases with
decreasing film thickness in a reasonably similar manner to that of the
unlabeled polystyrene thin films. The dielectric relaxation spectrum of the
DR1-labeled polystyrene is also investigated. As thickness decreases, the
-relaxation time becomes smaller and the distribution of the
-relaxation times becomes broader. These results show that thin films
of DR1-labeled polystyrene are a suitable system for investigating confinement
effects of the glass transition dynamics using dielectric relaxation
spectroscopy.Comment: 10 pages, 11 figures, 2 Table
Charmonium states in QCD-inspired quark potential model using Gaussian expansion method
We investigate the mass spectrum and electromagnetic processes of charmonium
system with the nonperturbative treatment for the spin-dependent potentials,
comparing the pure scalar and scalar-vector mixing linear confining potentials.
It is revealed that the scalar-vector mixing confinement would be important for
reproducing the mass spectrum and decay widths, and therein the vector
component is predicted to be around 22%. With the state wave functions obtained
via the full-potential Hamiltonian, the long-standing discrepancy in M1
radiative transitions of and are alleviated
spontaneously. This work also intends to provide an inspection and suggestion
for the possible among the copious higher charmonium-like states.
Particularly, the newly observed X(4160) and X(4350) are found in the
charmonium family mass spectrum as MeV and MeV, which strongly favor the assignments
respectively. The corresponding radiative transitions, leptonic and two-photon
decay widths have been also predicted theoretically for the further
experimental search.Comment: 16 pages,3 figure
Spacings of Quarkonium Levels with the Same Principal Quantum Number
The spacings between bound-state levels of the Schr\"odinger equation with
the same principal quantum number but orbital angular momenta
differing by unity are found to be nearly equal for a wide range of power
potentials , with . Semiclassical approximations are in accord with this behavior. The
result is applied to estimates of masses for quarkonium levels which have not
yet been observed, including the 2P states and the 1D
states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process
using psfig.sty
The Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol
The diffusion of glycerol molecules decreases with decreasing temperature as
its viscosity increases in a manner simply described by the Stokes-Einstein(SE)
relation. Approaching the glass transition, this relation breaks down as it
does with a number of other pure liquid glass formers. We have measured the
diffusion coefficient for binary mixtures of glycerol and water and find that
the Stokes-Einstein relation is restored with increasing water concentration.
Our comparison with theory suggests that addition of water postpones the
formation of frustration domainsComment: 4 Pages and 3 Figure
A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake
The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia
Possible retardation effects of quark confinement on the meson spectrum
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon
exchange is applied to quark-antiquark bound states. The so called intrinsic
flaw of Salpeter equation with static scalar confinement is investigated. The
notorious problem of narrow level spacings is found to be remedied by taking
into consideration the retardation effect of scalar confinement. Good fit for
the mass spectrum of both heavy and light quarkomium states is then obtained.Comment: 14 pages in LaTex for
- …
