91 research outputs found

    Adjuvant nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phase III Trial

    Get PDF
    PURPOSE: This randomized, open -label trial compared the efficacy and safety of adjuvant nabpaclitaxel + gemcitabine with those of gemcitabine for resected pancreatic ductal adenocarcinoma (ClinicalTrials.gov identifier: NCT01964430). METHODS: We assigned 866 treatment -naive patients with pancreatic ductal adenocarcinoma to nab-paclitaxel (125 mg/m2) + gemcitabine (1,000 mg/m(2)) or gemcitabine alone to one 30-40 infusion on days 1, 8, and 15 of six 28 -day cycles. The primary end point was independently assessed disease -free survival (DFS). Additional end points included investigator-assessed DFS, overall survival (OS), and safety. RESULTS: Two hundred eighty-seven of 432 patients and 310 of 434 patients completed nabpaclitaxel + gemcitabine and gemcitabine treatment, respectively. At primary data cutoff (December 31, 2018; median follow-up, 38.5 [interquartile range [IQR], 33.8-43 months), the median independently assessed DFS was 19.4 (nab-paclitaxel + gemcitabine) versus 18.8 months (gemcitabine; hazard ratio [HR], 0.88; 95% CI, 0.729 to 1.063; P =.18). The median investigator-assessed DFS was 16.6 (IQR, 8.4-47.0) and 13.7 (IQR, 8.3-44.1) months, respectively (HR, 0.82; 95% CI, 0.694 to 0.965; P=.02). The median OS (427 events; 68% mature) was 40.5 (IQR, 20.7 to not reached) and 36.2 (IQR, 17.7-53.3) months, respectively (HR, 0.82; 95% CI, 0.680 to 0.996; P =.045). At a 16 -month follow-up (cutoff, April 3, 2020; median follow-up, 51.4 months [IQR, 47.0-57.0]), the median OS (511 events; 81% mature) was 41.8 (nab-paclitaxel + gemcitabine) versus 37.7 months (gemcitabine; HR, 0.82; 95% CI, 0.687 to 0.973; P =.0232). At the 5 -year follow-up (cutoff, April 9, 2021; median follow-up, 63.2 months [IQR, 60.1-68.7]), the median OS (555 events; 88% mature) was 41.8 versus 37.7 months, respectively (HR, 0.80; 95% CI, 0.678 to 0.947; P =.0091). Eighty-six percent (nab-paclitaxel + gemcitabine) and 68% (gemcitabine) of patients experienced grade >= 3 treatment -emergent adverse events. Two patients per study arm died of treatment -emergent adverse events. CONCLUSION: The primary end point (independently assessed DFS) was not met despite favorable OS seen with nab-paclitaxel + gemcitabine

    An X-ray microtomographic and finite element modeling approach for the prediction of semi-solid deformation behaviour in Al-Cu alloys

    No full text
    There is a dearth of published experimental measurements of flow stress behaviour of semi-solids, yet it is critical for simulating phenomena ranging from the processing of metals to the flow of magma. In this paper, a method for calculating flow stress behaviour of semi-solids was developed using a combination of high-temperature compression testing, X-ray microtomography (XMT) imaging and direct finite element modeling (DFEM). This novel methodology was applied to columnar dendritic structures in semi-solid Al-Cu alloys via first quantifying the complex geometry of the semi-solid using XMT. Then these three-dimensional datasets were meshed and their behaviour was simulated using DFEM to derive the stress-strain relationship with a fraction solid (fS) dependency term. The mechanical behaviour of the solid dendrites near the liquidus temperature was not available in the literature; therefore, samples were fabricated and compression tested using a Gleeble 3500 thermomechanical simulator. The resulting XMT-DFEM-derived constitutive equation predicts the flow stress behaviour of semi-solid in the range of fS equal to 0.1-0.9, showing good correlation to prior experimental data for both other aluminium and ferrous alloys. © 2009 Acta Materialia Inc

    Microtomographic characterization of columnar Al–Cu dendrites for fluid flow and flow stress determination

    No full text
    During the twin roll casting of Al alloys, the interdendritic liquid may flow as the two solidification fronts are compressed together between the rolls. This can lead to defects such as centerline segregation. To understand the flow properties of the interdendritic liquid, samples of Al–12 wt.% Cu were solidified directionally in a Bridgman furnace and quenched to capture the growing columnar dendritic structures. The quenched samples were scanned using a laboratory X-ray microtomography (XMT) unit to obtain the 3D structure with a voxel resolution of 7.2 μm. Image analysis was used to separate the Al dendrite from the interdendritic Al–Al2Cu eutectic. Flow between the dendrites was simulated by solving the Stokes equation to calculate the permeability tensor as a function of the fraction solid. The results were compared to prior experimental measurements and calculations using synchrotron tomography observations of equiaxed structures. Elasto–plastic finite element (FE) simulations were performed on the dendritic structures to determine flow stress behavior as a function of fraction solid. It was found that the standard approximations for the reduction in flow stress in the semi-solid have a variation in excess of 100% from that calculated using the true structure. Therefore, it is critical to simulate the actual dendrite for effective flow stress determination
    corecore