763 research outputs found
Darwinism and Organizational Ecology: A Reply to Reydon and Scholz
In an earlier article published in this journal I challenge Reydon and Scholz's (2009) claim that Organizational Ecology is a non-Darwinian program. In this replay to Reydon and Scholz's subsequent response, I clarify the difference between our two approaches denoted by an emphasis her on the careful application of core Darwinian principles and an insistence by Reydon and Scholz on direct biological analogies. On a substantive issue, they identify as being the principle problem for Organizational Ecology, namely, the inability to identify replicators and interactors "of the right sort" in the business domain; this is also shown to be easily addressed with reference to empirical studies of business populations.Peer reviewedFinal Accepted Versio
Genetic Polymorphism in Evolving Population
We present a model for evolving population which maintains genetic
polymorphism. By introducing random mutation in the model population at a
constant rate, we observe that the population does not become extinct but
survives, keeping diversity in the gene pool under abrupt environmental
changes. The model provides reasonable estimates for the proportions of
polymorphic and heterozygous loci and for the mutation rate, as observed in
nature
Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution
We study evolutionary canalization using a spin-glass model with replica
theory, where spins and their interactions are dynamic variables whose
configurations correspond to phenotypes and genotypes, respectively. The spins
are updated under temperature T_S, and the genotypes evolve under temperature
T_J, according to the evolutionary fitness. It is found that adaptation occurs
at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S <
T_S^{RS}. The replica symmetric phase implies canalization, and replica
symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
Entropic Sampling and Natural Selection in Biological Evolution
With a view to connecting random mutation on the molecular level to
punctuated equilibrium behavior on the phenotype level, we propose a new model
for biological evolution, which incorporates random mutation and natural
selection. In this scheme the system evolves continuously into new
configurations, yielding non-stationary behavior of the total fitness. Further,
both the waiting time distribution of species and the avalanche size
distribution display power-law behaviors with exponents close to two, which are
consistent with the fossil data. These features are rather robust, indicating
the key role of entropy
Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity
Background
The neotropical leaf‐nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes.
Results
In this study, we use three‐dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis.
Conclusion
These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists
Shaping Robust System through Evolution
Biological functions are generated as a result of developmental dynamics that
form phenotypes governed by genotypes. The dynamical system for development is
shaped through genetic evolution following natural selection based on the
fitness of the phenotype. Here we study how this dynamical system is robust to
noise during development and to genetic change by mutation. We adopt a
simplified transcription regulation network model to govern gene expression,
which gives a fitness function. Through simulations of the network that
undergoes mutation and selection, we show that a certain level of noise in gene
expression is required for the network to acquire both types of robustness. The
results reveal how the noise that cells encounter during development shapes any
network's robustness, not only to noise but also to mutations. We also
establish a relationship between developmental and mutational robustness
through phenotypic variances caused by genetic variation and epigenetic noise.
A universal relationship between the two variances is derived, akin to the
fluctuation-dissipation relationship known in physics
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Topological reversibility and causality in feed-forward networks
Systems whose organization displays causal asymmetry constraints, from
evolutionary trees to river basins or transport networks, can be often
described in terms of directed paths (causal flows) on a discrete state space.
Such a set of paths defines a feed-forward, acyclic network. A key problem
associated with these systems involves characterizing their intrinsic degree of
path reversibility: given an end node in the graph, what is the uncertainty of
recovering the process backwards until the origin? Here we propose a novel
concept, \textit{topological reversibility}, which rigorously weigths such
uncertainty in path dependency quantified as the minimum amount of information
required to successfully revert a causal path. Within the proposed framework we
also analytically characterize limit cases for both topologically reversible
and maximally entropic structures. The relevance of these measures within the
context of evolutionary dynamics is highlighted.Comment: 9 pages, 3 figure
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations
- …
