1,318 research outputs found
Emergence of Long-range Correlations and Rigidity at the Dynamic Glass Transition
At the microscopic level, equilibrium liquid's translational symmetry is
spontaneously broken at the so-called dynamic glass transition predicted by the
mean-field replica approach. We show that this fact implies the emergence of
Goldstone modes and long-range density correlations. We derive and evaluate a
new statistical mechanical expression for the glass shear modulus.Comment: 4 page
Critical Decay at Higher-Order Glass-Transition Singularities
Within the mode-coupling theory for the evolution of structural relaxation in
glass-forming systems, it is shown that the correlation functions for density
fluctuations for states at A_3- and A_4-glass-transition singularities can be
presented as an asymptotic series in increasing inverse powers of the logarithm
of the time t: , where
with p_n denoting some polynomial and x=ln (t/t_0). The results are
demonstrated for schematic models describing the system by solely one or two
correlators and also for a colloid model with a square-well-interaction
potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in
Colloidal Systems with Short-Range Attractions", Messina, Italy, December
2003 (submitted
Asymptotic analysis of mode-coupling theory of active nonlinear microrheology
We discuss a schematic model of mode-coupling theory for force-driven active
nonlinear microrheology, where a single probe particle is pulled by a constant
external force through a dense host medium. The model exhibits both a glass
transition for the host, and a force-induced delocalization transition, where
an initially localized probe inside the glassy host attains a nonvanishing
steady-state velocity by locally melting the glass. Asymptotic expressions for
the transient density correlation functions of the schematic model are derived,
valid close to the transition points. There appear several nontrivial time
scales relevant for the decay laws of the correlators. For the nonlinear
friction coeffcient of the probe, the asymptotic expressions cause various
regimes of power-law variation with the external force, and two-parameter
scaling laws.Comment: 17 pages, 12 figure
Thermodynamics of the two-dimensional frustrated J1-J2 Heisenberg ferromagnet in the collinear stripe regime: Susceptibility and correlation length
We calculate the temperature dependence of the correlation length xi and the
uniform susceptibility chi_0 of the frustrated J1-J2 square-lattice Heisenberg
ferromagnet in the collinear stripe phase using Green-function technique. The
height chi_{max} and the position T(chi_{max}) of the maximum in the chi_0(T)
curve exhibit a characteristic dependence on the frustration parameter J2/|J1|,
which is well described by power laws, chi_{max}=a(J2-J2^c)^{-nu} and
T(chi_{max})=b(J_2-J_2^c), where J2^c = 0.4 and nu is of the order of unity.The
correlation length diverges at low temperatures as xi \propto e^{A/T}, where A
increases with growing J2/|J1|. We also compare our results with recent
measurements on layered vanadium phosphates and find reasonable agreement.Comment: 7 pages, 5 figures, version as published in Phys. Rev.
Self-diffusion in sheared colloidal suspensions: violation of fluctuation-dissipation relation
Using memory-function formalism we show that in sheared colloidal suspensions
the fluctuation-dissipation theorem for self-diffusion, i.e. Einstein's
relation between self-diffusion and mobility tensors, is violated and propose a
new way to measure this violation in Brownian Dynamics simulations. We derive
mode-coupling expressions for the tagged particle friction tensor and for an
effective, shear-rate dependent temperature
Fragile to strong crossover coupled to liquid-liquid transition in hydrophobic solutions
Using discrete molecular dynamics simulations we study the relation between
the thermodynamic and diffusive behaviors of a primitive model of aqueous
solutions of hydrophobic solutes consisting of hard spheres in the Jagla
particles solvent, close to the liquid-liquid critical point of the solvent. We
find that the fragile-to-strong dynamic transition in the diffusive behavior is
always coupled to the low-density/high-density liquid transition. Above the
liquid-liquid critical pressure, the diffusivity crossover occurs at the Widom
line, the line along which the thermodynamic response functions show maxima.
Below the liquid-liquid critical pressure, the diffusivity crossover occurs
when the limit of mechanical stability lines are crossed, as indicated by the
hysteresis observed when going from high to low temperature and vice versa.
These findings show that the strong connection between dynamics and
thermodynamics found in bulk water persists in hydrophobic solutions for
concentrations from low to moderate, indicating that experiments measuring the
relaxation time in aqueous solutions represent a viable route for solving the
open questions in the field of supercooled water.Comment: 6 pages, 4 figures. Accepted for publication on Physical Review
The magnetization process of the spin-one triangular-lattice Heisenberg antiferromagnet
We apply the coupled cluster method and exact diagonalzation to study the
uniform susceptibility and the ground-state magnetization curve of the
triangular-lattice spin-1 Heisenberg antiferromagnet. Comparing our theoretical
data for the magnetization curve with recent measurements on the s=1 triangular
lattice antiferromagnet Ba3NiSb2O9 we find a very good agreement.Comment: 2 pages, 3 figure
Tests of mode coupling theory in a simple model for two-component miscible polymer blends
We present molecular dynamics simulations on the structural relaxation of a
simple bead-spring model for polymer blends. The introduction of a different
monomer size induces a large time scale separation for the dynamics of the two
components. Simulation results for a large set of observables probing density
correlations, Rouse modes, and orientations of bond and chain end-to-end
vectors, are analyzed within the framework of the Mode Coupling Theory (MCT).
An unusually large value of the exponent parameter is obtained. This feature
suggests the possibility of an underlying higher-order MCT scenario for dynamic
arrest.Comment: Revised version. Additional figures and citation
- …
