462 research outputs found

    Sabotage in Contests: A Survey

    Get PDF
    A contest is a situation in which individuals expend irretrievable resources to win valuable prize(s). ‘Sabotage’ is a deliberate and costly act of damaging a rival’s' likelihood of winning the contest. Sabotage can be observed in, e.g., sports, war, promotion tournaments, political or marketing campaigns. In this article, we provide a model and various perspectives on such sabotage activities and review the economics literature analyzing the act of sabotage in contests. We discuss the theories and evidence highlighting the means of sabotage, why sabotage occurs, and the effects of sabotage on individual players and on overall welfare, along with possible mechanisms to reduce sabotage. We note that most sabotage activities are aimed at the ablest player, the possibility of sabotage reduces productive effort exerted by the players, and sabotage may lessen the effectiveness of public policies, such as affirmative action, or information revelation in contests. We discuss various policies that a designer may employ to counteract sabotage activities. We conclude by pointing out some areas of future research

    Where the electroweak phase transition ends

    Get PDF
    We give a more precise characterisation of the end of the electroweak phase transition in the framework of the effective 3d SU(2)--Higgs lattice model than has been given before. The model has now been simulated at gauge couplings beta_G=12 and 16 for Higgs masses M_H^*=70, 74, 76 and 80 GeV up to lattices 96^3 and the data have been used for reweighting. The breakdown of finite volume scaling of the Lee-Yang zeroes indicates the change from a first order transition to a crossover at lambda_3/g_3^2=0.102(2) in rough agreement with results of Karsch et al (hep-lat/9608087) at \beta_G=9 and smaller lattices. The infinite volume extrapolation of the discontinuity Delta /g_3^2 turns out to be zero at lambda_3/g_3^2=0.107(2) being an upper limit. We comment on the limitations of the second method.Comment: RevTeX, 19 pages, 11 figures, 2 tables; additional MC-data near the endpoint considere

    Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices

    Get PDF
    We present results from a simulation of quenched overlap fermions with L\"uscher-Weisz gauge field action on lattices up to 2434824^3 48 and for pion masses down to 250\approx 250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RIMOMRI-MOM scheme. The simulations are performed at two different lattice spacings, a0.1a \approx 0.1 fm and 0.15\approx 0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well

    ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks

    Get PDF
    Observations of interstellar gas-phase and solid-state species in the 2.4-200 micron range obtained with the spectrometers on board the Infrared Space Observatory are reviewed. Lines and bands due to ices, polycyclic aromatic hydrocarbons, silicates and gas-phase atoms and molecules (in particular H2, CO, H2O, OH and CO2) are summarized and their diagnostic capabilities illustrated. The results are discussed in the context of the physical and chemical evolution of star-forming regions, including photon-dominated regions, shocks, protostellar envelopes and disks around young stars.Comment: 56 pages, 17 figures. To appear in Ann. Rev. Astron. Astrophys. 2004. Higher resolution version posted at http://www.strw.leidenuniv.nl/~ewine/araa04.pd

    Structure functions and form factors close to the chiral limit from lattice QCD

    Get PDF
    Results for nucleon matrix elements (arising from moments of structure functions) and form factors from a mixture of runs using Wilson, clover and overlap fermions (both quenched and unquenched) are presented and compared in an effort to explore the size of the chiral `regime', lattice spacing errors and quenching artefacts. While no run covers this whole range of effects the partial results indicate a picture of small lattice spacing errors, small quenching effects and only reaching the chiral regime at rather light quark masses.Comment: 7 pages, 7 figures; contribution to the 2003 Workshop on Lattice Hadron Physics, Cairns, Australia; error in Fig. 4 corrected; minor text change

    Lattice determination of the critical point of QCD at finite T and \mu

    Get PDF
    Based on universal arguments it is believed that there is a critical point (E) in QCD on the temperature (T) versus chemical potential (\mu) plane, which is of extreme importance for heavy-ion experiments. Using finite size scaling and a recently proposed lattice method to study QCD at finite \mu we determine the location of E in QCD with n_f=2+1 dynamical staggered quarks with semi-realistic masses on Lt=4L_t=4 lattices. Our result is T_E=160 \pm 3.5 MeV and \mu_E= 725 \pm 35 MeV. For the critical temperature at \mu=0 we obtained T_c=172 \pm 3 MeV.Comment: misprints corrected, version to appear in JHE

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    Goodness-of-Fit Tests for Symmetric Stable Distributions -- Empirical Characteristic Function Approach

    Full text link
    We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard symmetric stable distribution with the characteristic exponent α\alpha estimated from the data. We treat α\alpha as an unknown parameter, but for theoretical simplicity we also consider the case that α\alpha is fixed. For estimation of parameters and the standardization of data we use maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE) which minimizes the weighted integral. We derive the asymptotic covariance function of the characteristic function process with parameters estimated by MLE and EISE. For the case of MLE, the eigenvalues of the covariance function are numerically evaluated and asymptotic distribution of the test statistic is obtained using complex integration. Simulation studies show that the asymptotic distribution of the test statistics is very accurate. We also present a formula of the asymptotic covariance function of the characteristic function process with parameters estimated by an efficient estimator for general distributions

    The 2-loop MSSM finite temperature effective potential with stop condensation

    Full text link
    We calculate the finite temperature 2-loop effective potential in the MSSM with stop condensation, using a 3-dimensional effective theory. We find that in a part of the parameter space, a two-stage electroweak phase transition appears possible. The first stage would be the formation of a stop condensate, and the second stage is the transition to the standard electroweak minimum. The two-stage transition could significantly relax the baryon erasure bounds, but the parameter space allowing it (m_H \lsim 100 GeV, m_tR \sim 155-160 GeV) is not very large. We estimate the reliability of our results using renormalization scale and gauge dependence. Finally we discuss some real-time aspects relevant for the viability of the two-stage scenario.Comment: 30 pages, 7 figure
    corecore