28,679 research outputs found
Skeleton and fractal scaling in complex networks
We find that the fractal scaling in a class of scale-free networks originates
from the underlying tree structure called skeleton, a special type of spanning
tree based on the edge betweenness centrality. The fractal skeleton has the
property of the critical branching tree. The original fractal networks are
viewed as a fractal skeleton dressed with local shortcuts. An in-silico model
with both the fractal scaling and the scale-invariance properties is also
constructed. The framework of fractal networks is useful in understanding the
utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR
The Eliashberg Function of Amorphous Metals
A connection is proposed between the anomalous thermal transport properties
of amorphous solids and the low-frequency behavior of the Eliashberg function.
By means of a model calculation we show that the size and frequency dependence
of the phonon mean-free-path that has been extracted from measurements of the
thermal conductivity in amorphous solids leads to a sizeable linear region in
the Eliashberg function at small frequencies. Quantitative comparison with
recent experiments gives very good agreement.Comment: 4pp., REVTeX, 1 uuencoded ps fig. Original posting had a corrupted
raw ps fig appended. Published as PRB 51, 689 (1995
Optimized Dynamical Decoupling for Time Dependent Hamiltonians
The validity of optimized dynamical decoupling (DD) is extended to
analytically time dependent Hamiltonians. As long as an expansion in time is
possible the time dependence of the initial Hamiltonian does not affect the
efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension
provides the analytic basis for (i) applying UDD to effective Hamiltonians in
time dependent reference frames, for instance in the interaction picture of
fast modes and for (ii) its application in hierarchical
DD schemes with pulses about two perpendicular axes in spin space. to
suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure
^{27}Al Impurity-Satellite NMR and Non-Fermi-Liquid Behavior in U_{1-x}Th_xPd_2Al_3
Non-Fermi-liquid (NFL) behavior in the f-sublattice-diluted alloy system
U_{1-x}Th_xPd_2Al_3 has been studied using ^{27}Al nuclear magnetic resonance
(NMR). Impurity satellites due to specific U near-neighbor configurations to
^{27}Al sites are clearly resolved in both random and field-aligned powder
samples. The spatial mean Kbar and rms spread delta K of impurity satellite
shifts, which are related to the mean chibar and rms spread delta chi of the
inhomogeneous susceptibility, have been measured in field-aligned powders with
the crystalline c axis both perpendicular and parallel to the external field.
The relatively narrow lines observed at low temperatures suggest that disorder-
induced inhomogeneity of the f-ion--conduction-electron hybridization is not
the cause of NFL behavior in these alloys: at low temperatures the experimental
values of delta chi(T)/chibar(T) are much smaller than required by disorder-
driven models. This is in contrast to results in at least some alloys with
disordered non-f-ion nearest neighbors to f ions ("ligand disorder"), where
disorder-driven theories give good accounts of NFL behavior. Our results
suggest that f-ion dilution does not produce as much inhomogeneity of the
hybridization strength as substitution on ligand sites.Comment: 10 pages, 12 figures, REVTeX. Submitted to Phys. Rev.
Upon the existence of short-time approximations of any polynomial order for the computation of density matrices by path integral methods
In this article, I provide significant mathematical evidence in support of
the existence of short-time approximations of any polynomial order for the
computation of density matrices of physical systems described by arbitrarily
smooth and bounded from below potentials. While for Theorem 2, which is
``experimental'', I only provide a ``physicist's'' proof, I believe the present
development is mathematically sound. As a verification, I explicitly construct
two short-time approximations to the density matrix having convergence orders 3
and 4, respectively. Furthermore, in the Appendix, I derive the convergence
constant for the trapezoidal Trotter path integral technique. The convergence
orders and constants are then verified by numerical simulations. While the two
short-time approximations constructed are of sure interest to physicists and
chemists involved in Monte Carlo path integral simulations, the present article
is also aimed at the mathematical community, who might find the results
interesting and worth exploring. I conclude the paper by discussing the
implications of the present findings with respect to the solvability of the
dynamical sign problem appearing in real-time Feynman path integral
simulations.Comment: 19 pages, 4 figures; the discrete short-time approximations are now
treated as independent from their continuous version; new examples of
discrete short-time approximations of order three and four are given; a new
appendix containing a short review on Brownian motion has been added; also,
some additional explanations are provided here and there; this is the last
version; to appear in Phys. Rev.
Jahn-Teller versus quantum effects in the spin-orbital material LuVO3
We report on combined neutron and resonant x-ray scattering results,
identifying the nature of the spin-orbital ground state and magnetic
excitations in LuVO3 as driven by the orbital parameter. In particular, we
distinguish between models based on orbital Peierls dimerization, taken as a
signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor
of the latter. In order to solve this long-standing puzzle, polarized neutron
beams were employed as a prerequisite in order to solve details of the magnetic
structure, which allowed quantitative intensity-analysis of extended magnetic
excitation data sets. The results of this detailed study enabled us to draw
definite conclusions about classical vs quantum behavior of orbitals in this
system and to discard the previous claims about quantum effects dominating the
orbital physics of LuVO3 and similar systems.Comment: Phys. Rev. B 91, 161104(R) (2015
Open Questions in Classical Gravity
We discuss some outstanding open questions regarding the validity and
uniqueness of the standard second order Newton-Einstein classical gravitational
theory. On the observational side we discuss the degree to which the realm of
validity of Newton's Law of Gravity can actually be extended to distances much
larger than the solar system distance scales on which the law was originally
established. On the theoretical side we identify some commonly accepted but
actually still open to question assumptions which go into the formulating of
the standard second order Einstein theory in the first place. In particular, we
show that while the familiar second order Poisson gravitational equation (and
accordingly its second order covariant Einstein generalization) may be
sufficient to yield Newton's Law of Gravity they are not in fact necessary. The
standard theory thus still awaits the identification of some principle which
would then make it necessary too. We show that current observational
information does not exclusively mandate the standard theory, and that the
conformal invariant fourth order theory of gravity considered recently by
Mannheim and Kazanas is also able to meet the constraints of data, and in fact
to do so without the need for any so far unobserved non-luminous or dark
matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send
requests to [email protected]). To appear in a special issue of
Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of
his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing
Company, N.Y., Fall 199
Zn-induced spin dynamics in overdoped LaSrCuZnO
Spin fluctuations and the local spin susceptibility in isovalently
Zn-substituted LaSrCuZnO (,
) are measured via inelastic neutron scattering techniques. As
Zn is substituted onto the Cu-sites, an anomalous enhancement of
the local spin susceptibility appears due to the
emergence of a commensurate antiferromagnetic excitation centered at wave
vector \textbf{Q} that coexists with the known incommensurate
SDW excitations at \textbf{Q}.
Our results support a picture of Zn-induced antiferromagnetic (AF) fluctuations
appearing through a local staggered polarization of Cu-spins, and the
simultaneous suppression of T as AF fluctuations are slowed in proximity to
Zn-impurities suggests the continued importance of high energy AF fluctuations
at the far overdoped edge of superconductivity in the cuprates.Comment: 10 pages, 8 figure
Improving technology transfer through national systems of innovation: climate relevant innovation-system builders (CRIBs)
The Technology Executive Committee (TEC) of the United Nations Framework Convention on Climate Change (UNFCCC) recently convened a workshop seeking to understand how strengthening national systems of innovation (NSIs) might help to foster the transfer of climate technologies to developing countries. This article reviews insights from the literatures on Innovation Studies and Socio-Technical Transitions to demonstrate why this focus on fostering innovation systems has potential to be more transformative as an international policy mechanism for climate technology transfer than anything the UNFCCC has considered to date. Based on insights from empirical research, the article also articulates how the existing architecture of the UNFCCC Technology Mechanism could be usefully extended by supporting the establishment of CRIBs (climate relevant innovation-system builders) in developing countries – key institutions focused on nurturing the climate-relevant innovation systems and building technological capabilities that form the bedrock of transformative, climate-compatible technological change and development
- …
