16,946 research outputs found
Properties of the mechanosensitive channel MscS pore revealed by tryptophan scanning mutagenesis
Funding This work was supported by a Wellcome Trust Programme grant [092552/A/10/Z awarded to I.R.B., S.M., J. H. Naismith (University of St Andrews, St Andrews, U.K.), and S. J. Conway (University of Oxford, Oxford, U.K.)] (T.R. and M.D.E.), by a BBSRC grant (A.R.) [BB/H017917/1 awarded to I.R.B., J. H. Naismith, and O. Schiemann (University of St Andrews)], by a Leverhulme Emeritus Fellowship (EM-2012-060\2), and by a CEMI grant to I.R.B. from the California Institute of Technology. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013 FP7/2007-2011) under Grant PITN-GA-2011-289384 (FP7-PEOPLE-2011-ITN NICHE) (H.G.) (awarded to S.M.).Peer reviewedPublisher PD
Probing 5f-state configurations in URu2Si2 with U L3-edge resonant x-ray emission spectroscopy
Resonant x-ray emission spectroscopy (RXES) was employed at the U L3
absorption edge and the La1 emission line to explore the 5f occupancy, nf, and
the degree of 5f orbital delocalization in the hidden order compound URu2Si2.
By comparing to suitable reference materials such as UF4, UCd11, and alpha-U,
we conclude that the 5f orbital in URu2Si2 is at least partially delocalized
with nf = 2.87 +/- 0.08, and does not change with temperature down to 10 K
within the estimated error. These results place further constraints on
theoretical explanations of the hidden order, especially those requiring a
localized f2 ground state.Comment: 11 pages,7 figure
Horizon energy and angular momentum from a Hamiltonian perspective
Classical black holes and event horizons are highly non-local objects,
defined in terms of the causal past of future null infinity. Alternative,
(quasi)local definitions are often used in mathematical, quantum, and numerical
relativity. These include apparent, trapping, isolated, and dynamical horizons,
all of which are closely associated to two-surfaces of zero outward null
expansion. In this paper we show that three-surfaces which can be foliated with
such two-surfaces are suitable boundaries in both a quasilocal action and a
phase space formulation of general relativity. The resulting formalism provides
expressions for the quasilocal energy and angular momentum associated with the
horizon. The values of the energy and angular momentum are in agreement with
those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged
but many small improvements made in response to referees, a few references
adde
New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups
We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H^+, Li^+, Na^+, K^+, NH_(4)^+, Mg^(2+), Ca^(2+), Cl^−, Br^−, NO_(3)^−, HSO_(4)^−, and SO_(4)^(2−). Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with dicarboxylic acids and with levoglucosan. Overall, the new parameterization of AIOMFAC agrees well with a large number of experimental datasets. However, due to various reasons, for certain mixtures important deviations can occur. The new parameterization makes AIOMFAC a versatile thermodynamic tool. It enables the calculation of activity coefficients of thousands of different organic compounds in organic-inorganic mixtures of numerous components. Models based on AIOMFAC can be used to compute deliquescence relative humidities, liquid-liquid phase separations, and gas-particle partitioning of multicomponent mixtures of relevance for atmospheric chemistry or in other scientific fields
Determination of Lambda in quenched and full QCD - an update
We present an update on our previous determination of the Lambda parameter in
QCD. The main emphasis is on results for two flavours of light dynamical
quarks, where we can now almost double the amount of data used, including
values at smaller lattice spacings. The calculations are performed using
improved Wilson fermions. Little change is found to previous numerical values.Comment: Lattice2004(spectrum), Fermilab, June 21-26, 2004, 3 page
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
Quantifying structural damage from self-irradiation in a plutonium superconductor
The 18.5 K superconductor PuCoGa5 has many unusual properties, including
those due to damage induced by self-irradiation. The superconducting transition
temperature decreases sharply with time, suggesting a radiation-induced Frenkel
defect concentration much larger than predicted by current radiation damage
theories. Extended x-ray absorption fine-structure measurements demonstrate
that while the local crystal structure in fresh material is well ordered, aged
material is disordered much more strongly than expected from simple defects,
consistent with strong disorder throughout the damage cascade region. These
data highlight the potential impact of local lattice distortions relative to
defects on the properties of irradiated materials and underscore the need for
more atomic-resolution structural comparisons between radiation damage
experiments and theory.Comment: 7 pages, 5 figures, to be published in PR
Non-existence of stationary two-black-hole configurations
We resume former discussions of the question, whether the spin-spin repulsion
and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two
separate (Killing-) horizons and apply the inverse (scattering) method to solve
it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black
hole criterion, we prove the non-existence of the equilibrium situation in
question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue
(GeRG journal
Hadron masses and decay constants in quenched QCD
We present results for the mass spectrum and decay constants using
non-perturbatively O(a) improved Wilson fermions. Three values of and
30 different quark masses are used to obtain the chiral and continuum limits.
Special emphasis will be given to the question of taking the chiral limit and
the existence of non-analytic behavior predicted by quenched chiral
perturbation theory.Comment: LATTICE99(spectrum), 3 pages, 6 figure
- …
