9,670 research outputs found

    Tunable asymmetric reflectance in silver films near the percolation threshold

    Full text link
    We report on the optical characterization of semicontinuous nanostructured silver films exhibiting tunable optical reflectance asymmetries. The films are obtained using a multi-step process, where a nanocrystalline silver film is first chemically deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. The resulting films exhibit reflectance asymmetries whose dispersions may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point. We obtain a correlation between the optical response and charge transport in these films, with the spectral crossover point indicating the onset of charge percolation. Such broadband, dispersion-tunable asymmetric reflectors may find uses in future light-harvesting systems.Comment: 18 pages, 5 figures, accepted by Journal of Applied Physic

    Effect of electrical bias on spin transport across a magnetic domain wall

    Get PDF
    We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Interaction-free quantum computation

    Full text link
    In this paper, we study the quantum computation realized by an interaction-free measurement (IFM). Using Kwiat et al.'s interferometer, we construct a two-qubit quantum gate that changes one particle's trajectory according to whether or not the other particle exists in the interferometer. We propose a method for distinguishing Bell-basis vectors, each of which consists of a pair of an electron and a positron, by this gate. (This is called the Bell-basis measurement.) This method succeeds with probability 1 in the limit of NN \to \infty, where N is the number of beam splitters in the interferometer. Moreover, we can carry out a controlled-NOT gate operation by the above Bell-basis measurement and the method proposed by Gottesman and Chuang. Therefore, we can prepare a universal set of quantum gates by the IFM. This means that we can execute any quantum algorithm by the IFM.Comment: 11 pages, 7 figures, LaTex2

    Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State

    Full text link
    Preparation of a quantum register is an important step in quantum computation and quantum information processing. It is straightforward to build a simple quantum state such as |i_1 i_2 ... i_n\ket with iji_j being either 0 or 1, but is a non-trivial task to construct an {\it arbitrary} superposed quantum state. In this Paper, we present a scheme that can most generally initialize a quantum register with an arbitrary superposition of basis states. Implementation of this scheme requires O(Nn2)O(Nn^2) standard 1- and 2-bit gate operations, {\it without introducing additional quantum bits}. Application of the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.

    The Measurement Calculus

    Get PDF
    Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new version also include formalization of several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. To appear in Journal of AC

    Sequential Quantum Cloning

    Get PDF
    Not all unitary operations upon a set of qubits can be implemented by sequential interactions between each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning 1->M and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In particular, we obtain D = 2M for symmetric universal quantum cloning and D = M+1 for symmetric phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in each step of the sequential procedure for both cases.Comment: 4 pages, no figures. New version with changes. Accepted in Physical Review Letter

    Recognizing Small-Circuit Structure in Two-Qubit Operators and Timing Hamiltonians to Compute Controlled-Not Gates

    Full text link
    This work proposes numerical tests which determine whether a two-qubit operator has an atypically simple quantum circuit. Specifically, we describe formulae, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-not (CNOT) gates and all other gates being one-qubit. We give an algorithm for synthesizing two-qubit circuits with optimal number of CNOT gates, and illustrate it on operators appearing in quantum algorithms by Deutsch-Josza, Shor and Grover. In another application, our explicit numerical tests allow timing a given Hamiltonian to compute a CNOT modulo one-qubit gates, when this is possible.Comment: 4 pages, circuit examples, an algorithm and a new application (v3

    Maintaining coherence in Quantum Computers

    Get PDF
    The effect of the inevitable coupling to external degrees of freedom of a quantum computer are examined. It is found that for quantum calculations (in which the maintenance of coherence over a large number of states is important), not only must the coupling be small but the time taken in the quantum calculation must be less than the thermal time scale, /kBT\hbar/k_B T. For longer times the condition on the strength of the coupling to the external world becomes much more stringent.Comment: 13 page

    Rapid solution of problems by nuclear-magnetic-resonance quantum computation

    Get PDF
    We offer an improved method for using a nuclear-magnetic-resonance quantum computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the application of the NMRQC are exponential diminishment of density-matrix elements with the number of bits, threatening weak signal levels, and the high cost of preparing a suitable starting state. A third obstacle is a heretofore unnoticed restriction on measurement operators available for use by an NMRQC. Variations on the function classes of the Deutsch-Jozsa problem are introduced, both to extend the range of problems advantageous for quantum computation and to escape all three obstacles to use of an NMRQC. By adapting it to one such function class, the Deutsch-Jozsa problem is made solvable without exponential loss of signal. The method involves an extra work bit and a polynomially more involved Oracle; it uses the thermal-equilibrium density matrix systematically for an arbitrary number of spins, thereby avoiding both the preparation of a pseudopure state and temporal averaging.Comment: 19 page
    corecore