58,641 research outputs found
Saturated laser fluorescence in turbulent sooting flames at high pressure
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows
Hopf algebras and characters of classical groups
Schur functions provide an integral basis of the ring of symmetric functions.
It is shown that this ring has a natural Hopf algebra structure by identifying
the appropriate product, coproduct, unit, counit and antipode, and their
properties. Characters of covariant tensor irreducible representations of the
classical groups GL(n), O(n) and Sp(n) are then expressed in terms of Schur
functions, and the Hopf algebra is exploited in the determination of
group-subgroup branching rules and the decomposition of tensor products. The
analysis is carried out in terms of n-independent universal characters. The
corresponding rings, CharGL, CharO and CharSp, of universal characters each
have their own natural Hopf algebra structure. The appropriate product,
coproduct, unit, counit and antipode are identified in each case.Comment: 9 pages. Uses jpconf.cls and jpconf11.clo. Presented by RCK at
SSPCM'07, Myczkowce, Poland, Sept 200
Entangled inputs cannot make imperfect quantum channels perfect
Entangled inputs can enhance the capacity of quantum channels, this being one
of the consequences of the celebrated result showing the non-additivity of
several quantities relevant for quantum information science. In this work, we
answer the converse question (whether entangled inputs can ever render noisy
quantum channels have maximum capacity) to the negative: No sophisticated
entangled input of any quantum channel can ever enhance the capacity to the
maximum possible value; a result that holds true for all channels both for the
classical as well as the quantum capacity. This result can hence be seen as a
bound as to how "non-additive quantum information can be". As a main result, we
find first practical and remarkably simple computable single-shot bounds to
capacities, related to entanglement measures. As examples, we discuss the qubit
amplitude damping and identify the first meaningful bound for its classical
capacity.Comment: 5 pages, 2 figures, an error in the argument on the quantum capacity
corrected, version to be published in the Physical Review Letter
Average output entropy for quantum channels
We study the regularized average Renyi output entropy \bar{S}_{r}^{\reg} of
quantum channels. This quantity gives information about the average noisiness
of the channel output arising from a typical, highly entangled input state in
the limit of infinite dimensions. We find a closed expression for
\beta_{r}^{\reg}, a quantity which we conjecture to be equal to \Srreg. We
find an explicit form for \beta_{r}^{\reg} for some entanglement-breaking
channels, and also for the qubit depolarizing channel as a
function of the parameter . We prove equality of the two quantities in
some cases, in particular we conclude that for both are
non-analytic functions of the variable .Comment: 32 pages, several plots and figures; positivity condition added for
Theorem on entanglement breaking channels; new result for entrywise positive
channel
Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites
Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered
Production of long-lived atomic vapor inside high-density buffer gas
Atomic vapor of four different paramagnetic species: gold, silver, lithium,
and rubidium, is produced and studied inside several buffer gases: helium,
nitrogen, neon, and argon. The paramagnetic atoms are injected into the buffer
gas using laser ablation. Wires with diameters 25 m, 50 m, and 100
m are used as ablation targets for gold and silver, bulk targets are used
for lithium and rubidium. The buffer gas cools and confines the ablated atoms,
slowing down their transport to the cell walls. Buffer gas temperatures between
20 K and 295 K, and densities between cm and
cm are explored. Peak paramagnetic atom densities of cm
are routinely achieved. The longest observed paramagnetic vapor density decay
times are 110 ms for silver at 20 K and 4 ms for lithium at 32 K. The
candidates for the principal paramagnetic-atom loss mechanism are impurities in
the buffer gas, dimer formation and atom loss on sputtered clusters.Comment: Some minor editorial changes and corrections, added reference
Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics
The theory of the macroscopic field appearing in the Kohn-Sham
exchange-correlation potential for dielectric materials, as introduced by
Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field
cannot be determined from a knowledge of the local state of the material (local
crystal potential, electric field, and polarization) alone. Instead, it has an
intrinsically nonlocal dependence on the global electrostatic configuration.
For example, it vanishes in simple transverse configurations of a polarized
dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg
Formation and observation of a quasi-two-dimensional electron liquid in epitaxially stabilized SrLaTiO thin films
We report the formation and observation of an electron liquid in
SrLaTiO, the quasi-two-dimensional counterpart of SrTiO,
through reactive molecular-beam epitaxy and {\it in situ} angle-resolved
photoemission spectroscopy. The lowest lying states are found to be comprised
of Ti 3 orbitals, analogous to the LaAlO/SrTiO interface and
exhibit unusually broad features characterized by quantized energy levels and a
reduced Luttinger volume. Using model calculations, we explain these
characteristics through an interplay of disorder and electron-phonon coupling
acting co-operatively at similar energy scales, which provides a possible
mechanism for explaining the low free carrier concentrations observed at
various oxide heterostructures such as the LaAlO/SrTiO interface
- …
