15,710 research outputs found
Sedimentological and stratigraphic evolution of the southern part of the Barberton greenstone belt: A case of changing provenance and stability
The sedimentological and stratigraphic evolution of the 3.5 to 3.3 Ga Barberton Greenstone Belt can be divided into three principal stages: (1) the volcanic platform stage during which at least 8 km of mafic and ultramafic volcanic rocks, minor felsic volcanic units, and thin sedimentary layers (Onverwacht Group) accumulated under generally anorogenic conditions; (2) a transitional stage of developing instability during which widespread dacitic volcanism and associated pyroclastic and volcaniclastic sedimentation was punctuated by the deposition of terrigenous debris derived by uplift and shallow erosion of the belt itself (Fig Tree Group); (3) an orogenic stage involving cessation of active volcanism, extensive thrust faulting, and widespread deposition of clastic sediments representing deep erosion of the greenstone belt sequence as well as sources outside of the belt (Moodies Group)
The rock components and structures of Archean greenstone belts: An overview
Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts
Probabilistic Search for Object Segmentation and Recognition
The problem of searching for a model-based scene interpretation is analyzed
within a probabilistic framework. Object models are formulated as generative
models for range data of the scene. A new statistical criterion, the truncated
object probability, is introduced to infer an optimal sequence of object
hypotheses to be evaluated for their match to the data. The truncated
probability is partly determined by prior knowledge of the objects and partly
learned from data. Some experiments on sequence quality and object segmentation
and recognition from stereo data are presented. The article recovers classic
concepts from object recognition (grouping, geometric hashing, alignment) from
the probabilistic perspective and adds insight into the optimal ordering of
object hypotheses for evaluation. Moreover, it introduces point-relation
densities, a key component of the truncated probability, as statistical models
of local surface shape.Comment: 18 pages, 5 figure
Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia
The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth
Studying the scale and q^2 dependence of K^+-->pi^+e^+e^- decay
We extract the K^+-->pi^+e^+e^- amplitude scale at q^2=0 from the recent
Brookhaven E865 high-statistics data. We find that the q^2=0 scale is fitted in
excellent agreement with the theoretical long-distance amplitude. Lastly, we
find that the observed q^2 shape is explained by the combined effect of the
pion and kaon form-factor vector-meson-dominance rho, omega and phi poles, and
a charged pion loop coupled to a virtual photon-->e^+e^- transition.Comment: 8 pages, 3 figure
Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols
We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples
Maximized Posteriori Attributes Selection from Facial Salient Landmarks for Face Recognition
This paper presents a robust and dynamic face recognition technique based on
the extraction and matching of devised probabilistic graphs drawn on SIFT
features related to independent face areas. The face matching strategy is based
on matching individual salient facial graph characterized by SIFT features as
connected to facial landmarks such as the eyes and the mouth. In order to
reduce the face matching errors, the Dempster-Shafer decision theory is applied
to fuse the individual matching scores obtained from each pair of salient
facial features. The proposed algorithm is evaluated with the ORL and the IITK
face databases. The experimental results demonstrate the effectiveness and
potential of the proposed face recognition technique also in case of partially
occluded faces.Comment: 8 pages, 2 figure
Universality and Scaling at the Onset of Quantum Black Hole Formation
In certain two-dimensional models, collapsing matter forms a black hole if
and only if the incoming energy flux exceeds the Hawking radiation rate. Near
the critical threshold, the black hole mass is given by a universal formula in
terms of the distance from criticality, and there exists a scaling solution
describing the formation and evaporation of an arbitrarily small black hole.Comment: 9 pages, 3 figures (uuencoded
Magnetic Fields and Passive Scalars in Polyakov's Conformal Turbulence
Polyakov has suggested that two dimensional turbulence might be described by
a minimal model of conformal field theory. However, there are many minimal
models satisfying the same physical inputs as Polyakov's solution (p,q)=(2,21).
Dynamical magnetic fields and passive scalars pose different physical
requirements. For large magnetic Reynolds number other minimal models arise.
The simplest one, (p,q)=(2,13) makes reasonable predictions that may be tested
in the astrophysical context. In particular, the equipartition theorem between
magnetic and kinetic energies does not hold: the magnetic one dominates at
larger distances.Comment: 12 pages, UR-1296, ER-745-4068
- …
