26,785 research outputs found
Zero gravity apparatus Patent
Zero gravity apparatus utilizing pneumatic decelerating means to create payload subjected to zero gravity conditions by dropping its heigh
Initial bound state studies in light-front QCD
We present the first numerical QCD bound state calculation based on a
renormalization group-improved light-front Hamiltonian formalism. The QCD
Hamiltonian is determined to second order in the coupling, and it includes
two-body confining interactions. We make a momentum expansion, obtaining an
equal-time-like Schrodinger equation. This is solved for quark-antiquark
constituent states, and we obtain a set of self-consistent parameters by
fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include
Understanding the truth about subjectivity
Results of two experiments show children’s understanding of diversity in personal preference is incomplete. Despite acknowledging diversity, in Experiment 1(N=108), 6-
and 8-year-old children were less likely than adults to see preference as a legitimate basis for personal tastes and more likely to say a single truth could be found about a matter of taste. In Experiment 2 (N=96), 7- and 9-year-olds were less likely than 11- and 13-yearolds to say a dispute about a matter of preference might not be resolved. These data suggest that acceptance of the possibility of diversity does not indicate an adult-like understanding of subjectivity. An understanding of the relative emphasis placed on objective and subjective factors in different contexts continues to develop into adolescence
Quarkonia in Hamiltonian Light-Front QCD
A constituent parton picture of hadrons with logarithmic confinement
naturally arises in weak coupling light-front QCD. Confinement provides a mass
gap that allows the constituent picture to emerge. The effective renormalized
Hamiltonian is computed to , and used to study charmonium and
bottomonium. Radial and angular excitations can be used to fix the coupling
, the quark mass , and the cutoff . The resultant hyperfine
structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much
more reader-friendly); corrected error in self-energ
Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED
We study the part of the renormalized, cutoff QED light-front Hamiltonian
that does not change particle number. The Hamiltonian contains interactions
that must be treated in second-order bound state perturbation theory to obtain
hyperfine structure. We show that a simple unitary transformation leads
directly to the familiar Breit-Fermi spin-spin and tensor interactions, which
can be treated in degenerate first-order bound-state perturbation theory, thus
simplifying analytic light-front QED calculations. To the order in momenta we
need to consider, this transformation is equivalent to a Melosh rotation. We
also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil
Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization
Hamiltonian light-front field theory can be used to solve for hadron states
in QCD. To this end, a method has been developed for systematic renormalization
of Hamiltonian light-front field theories, with the hope of applying the method
to QCD. It assumed massless particles, so its immediate application to QCD is
limited to gluon states or states where quark masses can be neglected. This
paper builds on the previous work by including particle masses
non-perturbatively, which is necessary for a full treatment of QCD. We show
that several subtle new issues are encountered when including masses
non-perturbatively. The method with masses is algebraically and conceptually
more difficult; however, we focus on how the methods differ. We demonstrate the
method using massive phi^3 theory in 5+1 dimensions, which has important
similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra
disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final
published versio
Constraining the fundamental parameters of the O-type binary CPD-41degr7733
Using a set of high-resolution spectra, we studied the physical and orbital
properties of the O-type binary CPD-41 7733, located in the core of \ngc. We
report the unambiguous detection of the secondary spectral signature and we
derive the first SB2 orbital solution of the system. The period is 5.6815 +/-
0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably
consists of stars of spectral types O8.5 and B3. As for other objects in the
cluster, we observe discrepant luminosity classifications while using
spectroscopic or brightness criteria. Still, the present analysis suggests that
both components display physical parameters close to those of typical O8.5 and
B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during
six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no
significant variability between the different pointings, nor within the
individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a
three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4
keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction,
is observed. The emission of CPD-41 7733 is thus very representative of typical
O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
Momentum-resolved lattice dynamics of parent and electron-doped SrIrO
The mixing of orbital and spin character in the wave functions of the
iridates has led to predictions of strong couplings among their lattice,
electronic and magnetic degrees of freedom. As well as realizing a novel
spin-orbit assisted Mott-insulating ground state, the perovskite iridate
SrIrO has strong similarities with the cuprate LaCuO,
which on doping hosts a charge-density wave that appears intimately connected
to high-temperature superconductivity. These phenomena can be sensitively
probed through momentum-resolved measurements of the lattice dynamics, made
possible by meV-resolution inelastic x-ray scattering. Here we report the first
such measurements for both parent and electron-doped SrIrO. We find
that the low-energy phonon dispersions and intensities in both compounds are
well described by the same nonmagnetic density functional theory calculation.
In the parent compound, no changes of the phonons on magnetic ordering are
discernible within the experimental resolution, and in the doped compound no
anomalies are apparent due to charge-density waves. These measurements extend
our knowledge of the lattice properties of (SrLa)IrO
and constrain the couplings of the phonons to magnetic and charge order.Comment: 8 pages, 6 figures (+ 12 pages, 6 figures of supplemental material
Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis
- …
