30,786 research outputs found
Communication and control in an integrated manufacturing system
Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed
Shortcuts to adiabaticity for an ion in a rotating radially-tight trap
We engineer the fast rotation of a quantum particle confined in an
effectively one-dimensional, harmonic trap, for a predetermined rotation angle
and time, avoiding final excitation. Different schemes are proposed with
different speed limits that depend on the control capabilities. We also make
use of trap rotations to create squeezed states without manipulating the trap
frequencies.Comment: 11 pages, 6 figure
Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems
This work deals with the formation of black hole in bidimensional dilaton
gravity coupled to scalar matter fields. We investigate two scalar matter
systems, one described by a sixth power potential and the other defined with
two scalar fields containing up to the fourth power in the fields. The
topological solutions that appear in these cases allow the formation of black
holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268
Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction
We study a non-ergodic transition in a many-body Langevin system. We first
derive an equation for the two-point time correlation function of density
fluctuations, ignoring the contributions of the third- and fourth-order
cumulants. For this equation, with the average density fixed, we find that
there is a critical temperature at which the qualitative nature of the
trajectories around the trivial solution changes. Using a method of dynamical
system reduction around the critical temperature, we simplify the equation for
the time correlation function into a two-dimensional ordinary differential
equation. Analyzing this differential equation, we demonstrate that a
non-ergodic transition occurs at some temperature slightly higher than the
critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe
Perdeuterated cyanobiphenyl liquid crystals for infrared applications
Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications
Avatars:the other side of Proteus's mirror : a study into avatar choice regarding perception
The trend for online interactions, can be regarded as being ‘anti-so-cially social’, meaning that a great deal of time is spent playing, working and socializing with the internet serving as the communication conduit. Within that Virtual Social Environment very deep relationships are formed and maintained without the parties ever having met each other face-to-face. Raising the question how much does the physical appearance of an avatar influence the perception of the person behind it? Are relationships informed by appearance even in the vir-tual world and what implications does that have for second language acquisition? This paper leads to a small-scale research project where a selection of avatars with various racially identifiable characteristics were used to identify which av-atars a second language speaker would feel more at ease interacting with in the target language. The resultant research aims to test three hypotheses regarding preferred avatar choice for second language users based solely on perceptions
Interference of Bose-Einstein Condensates on an Atom Chip
We have used a microfabricated atom chip to split a single Bose-Einstein
condensate of sodium atoms into two spatially separated condensates. Dynamical
splitting was achieved by deforming the trap along the tightly confining
direction into a purely magnetic double-well potential. We observed the matter
wave interference pattern formed upon releasing the condensates from the
microtraps. The intrinsic features of the quartic potential at the merge point,
such as zero trap frequency and extremely high field-sensitivity, caused random
variations of the relative phase between the two split condensates. Moreover,
the perturbation from the abrupt change of the trapping potential during the
splitting was observed to induce vortices.Comment: 4 pages, 5 figure
Low velocity quantum reflection of Bose-Einstein condensates
We studied quantum reflection of Bose-Einstein condensates at normal
incidence on a square array of silicon pillars. For incident velocities of
2.5-26 mm/s observations agreed with theoretical predictions that the
Casimir-Polder potential of a reduced density surface would reflect slow atoms
with much higher probability. At low velocities (0.5-2.5 mm/s), we observed
that the reflection probability saturated around 60% rather than increasing
towards unity. We present a simple model which explains this reduced
reflectivity as resulting from the combined effects of the Casimir-Polder plus
mean field potential and predicts the observed saturation. Furthermore, at low
incident velocities, the reflected condensates show collective excitations.Comment: 4 figure
Point-Like Graviton Scattering in Plane-Wave Matrix Model
In a plane-wave matrix model we discuss a two-body scattering of gravitons in
the SO(3) symmetric space. In this case the graviton solutions are point-like
in contrast to the scattering in the SO(6) symmetric space where spherical
membranes are interpreted as gravitons. We concentrate on a configuration in
the 1-2 plane where a graviton rotates with a constant radius and the other one
elliptically rotates. Then the one-loop effective action is computed by using
the background field method. As the result, we obtain the 1/r^7-type
interaction potential, which strongly suggests that the scattering in the
matrix model would be closely related to that in the light-front
eleven-dimensional supergravity.Comment: 17 pages, 1 figure, LaTeX, v2) references adde
- …
