30,786 research outputs found

    Communication and control in an integrated manufacturing system

    Get PDF
    Typically, components in a manufacturing system are all centrally controlled. Due to possible communication bottlenecking, unreliability, and inflexibility caused by using a centralized controller, a new concept of system integration called an Integrated Multi-Robot System (IMRS) was developed. The IMRS can be viewed as a distributed real time system. Some of the current research issues being examined to extend the framework of the IMRS to meet its performance goals are presented. These issues include the use of communication coprocessors to enhance performance, the distribution of tasks and the methods of providing fault tolerance in the IMRS. An application example of real time collision detection, as it relates to the IMRS concept, is also presented and discussed

    Shortcuts to adiabaticity for an ion in a rotating radially-tight trap

    Full text link
    We engineer the fast rotation of a quantum particle confined in an effectively one-dimensional, harmonic trap, for a predetermined rotation angle and time, avoiding final excitation. Different schemes are proposed with different speed limits that depend on the control capabilities. We also make use of trap rotations to create squeezed states without manipulating the trap frequencies.Comment: 11 pages, 6 figure

    Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems

    Get PDF
    This work deals with the formation of black hole in bidimensional dilaton gravity coupled to scalar matter fields. We investigate two scalar matter systems, one described by a sixth power potential and the other defined with two scalar fields containing up to the fourth power in the fields. The topological solutions that appear in these cases allow the formation of black holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268

    Non-ergodic transitions in many-body Langevin systems: a method of dynamical system reduction

    Full text link
    We study a non-ergodic transition in a many-body Langevin system. We first derive an equation for the two-point time correlation function of density fluctuations, ignoring the contributions of the third- and fourth-order cumulants. For this equation, with the average density fixed, we find that there is a critical temperature at which the qualitative nature of the trajectories around the trivial solution changes. Using a method of dynamical system reduction around the critical temperature, we simplify the equation for the time correlation function into a two-dimensional ordinary differential equation. Analyzing this differential equation, we demonstrate that a non-ergodic transition occurs at some temperature slightly higher than the critical temperature.Comment: 8 pages, 1 figure; ver.3: Calculation errors have been fixe

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Avatars:the other side of Proteus's mirror : a study into avatar choice regarding perception

    Get PDF
    The trend for online interactions, can be regarded as being ‘anti-so-cially social’, meaning that a great deal of time is spent playing, working and socializing with the internet serving as the communication conduit. Within that Virtual Social Environment very deep relationships are formed and maintained without the parties ever having met each other face-to-face. Raising the question how much does the physical appearance of an avatar influence the perception of the person behind it? Are relationships informed by appearance even in the vir-tual world and what implications does that have for second language acquisition? This paper leads to a small-scale research project where a selection of avatars with various racially identifiable characteristics were used to identify which av-atars a second language speaker would feel more at ease interacting with in the target language. The resultant research aims to test three hypotheses regarding preferred avatar choice for second language users based solely on perceptions

    Interference of Bose-Einstein Condensates on an Atom Chip

    Full text link
    We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly confining direction into a purely magnetic double-well potential. We observed the matter wave interference pattern formed upon releasing the condensates from the microtraps. The intrinsic features of the quartic potential at the merge point, such as zero trap frequency and extremely high field-sensitivity, caused random variations of the relative phase between the two split condensates. Moreover, the perturbation from the abrupt change of the trapping potential during the splitting was observed to induce vortices.Comment: 4 pages, 5 figure

    Low velocity quantum reflection of Bose-Einstein condensates

    Full text link
    We studied quantum reflection of Bose-Einstein condensates at normal incidence on a square array of silicon pillars. For incident velocities of 2.5-26 mm/s observations agreed with theoretical predictions that the Casimir-Polder potential of a reduced density surface would reflect slow atoms with much higher probability. At low velocities (0.5-2.5 mm/s), we observed that the reflection probability saturated around 60% rather than increasing towards unity. We present a simple model which explains this reduced reflectivity as resulting from the combined effects of the Casimir-Polder plus mean field potential and predicts the observed saturation. Furthermore, at low incident velocities, the reflected condensates show collective excitations.Comment: 4 figure

    Point-Like Graviton Scattering in Plane-Wave Matrix Model

    Full text link
    In a plane-wave matrix model we discuss a two-body scattering of gravitons in the SO(3) symmetric space. In this case the graviton solutions are point-like in contrast to the scattering in the SO(6) symmetric space where spherical membranes are interpreted as gravitons. We concentrate on a configuration in the 1-2 plane where a graviton rotates with a constant radius and the other one elliptically rotates. Then the one-loop effective action is computed by using the background field method. As the result, we obtain the 1/r^7-type interaction potential, which strongly suggests that the scattering in the matrix model would be closely related to that in the light-front eleven-dimensional supergravity.Comment: 17 pages, 1 figure, LaTeX, v2) references adde
    corecore