9,986 research outputs found

    Shell-model predictions for double-Lambda hypernuclei

    Full text link
    It is shown how the recent shell-model determination of Lambda-N spin dependent interaction terms in Lambda hypernuclei allows for a reliable deduction of Lambda-Lambda separation energies in Lambda-Lambda hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting 11(Lambda-Lambda)Be and 12(Lambda-Lambda)Be which have been suggested as possible candidates for the KEK-E373 Hida event.Comment: extends arXiv:1011.0181 [nucl-th]; v2 -- a few references added, Phys. Lett. B (accepted

    A two-cocycle on the group of symplectic diffeomorphisms

    Get PDF
    We investigate a two-cocycle on the group of symplectic diffeomorphisms of an exact symplectic manifolds defined by Ismagilov, Losik, and Michor and investigate its properties. We provide both vanishing and non-vanishing results and applications to foliated symplectic bundles and to Hamiltonian actions of finitely generated groups.Comment: 16 pages, no figure

    Multi-Kˉ\bar{K} nuclei and kaon condensation

    Full text link
    We extend previous relativistic mean-field (RMF) calculations of multi-Kˉ\bar K nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting Kˉ\bar K separation energy BKˉB_{\bar K}, as well as the associated nuclear and Kˉ\bar K-meson densities, saturate with the number κ\kappa of Kˉ\bar K mesons for κ>κsat10\kappa > \kappa_{\rm sat} \sim 10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BKˉB_{\bar K} generally does not exceed 200 MeV, it is argued that multi-Kˉ\bar K nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and Kˉ0{\bar K}^0 mesons, or protons and KK^- mesons, and study their properties.Comment: 21 pages, 8 figures, revised text and reference

    The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

    Get PDF
    We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h^(–1)_70 Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z ≈ 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc × 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s^–1. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the Hδ line in a composite spectrum of 138 members indicates a substantial contribution from recent starbursts to the overall galaxy population. In contrast, the X-ray-selected RX J1821.6+6827 is a largely isolated, massive cluster with a measured velocity dispersion of 926 ± 77 km s^(–1). The cluster exhibits a well-defined red sequence with a large quiescent galaxy population. The results from these two targets, along with preliminary findings on other ORELSE clusters, suggest that optical selection may be more effective than X-ray surveys at detecting less-evolved, dynamically active systems at these redshifts

    Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    Get PDF
    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle)

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiO₂ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiO₂ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council
    corecore