480 research outputs found

    Electrostatic effects and band-bending in doped topological insulators

    Get PDF
    We investigate the electrostatic effects in doped topological insulators by developing a self consistent scheme for an interacting tight binding model. The presence of bulk carriers, in addition to surface electrons, generates an intrinsic inhomogeneous charge density in the vicinity of the surface and, as a result, band bending effects are present. We find that electron doping and hole doping produce band bending effects of similar magnitude and opposite signs. The presence of additional surface dopants breaks this approximate electron-hole symmetry and dramatically affects the magnitude of the band bending. Applying a gate potential can generate a depletion zone characterized by a vanishing carrier density. We find that the density profile in the transition zone between the depleted region and the bulk is independent of the applied potential. In thin films the electrostatic effects are strongly dependent on the carrier charge density. In addition, we find that substrate induced potentials can generate a Rashba type spin-orbit coupling in ultra thin topological insulator films. We calculate the profiles of bulk and surface states in topological insulator films and identify the conditions corresponding to both types of states being localized within the same region in space.Comment: 9 pages, 10 figure

    Quantum Criticality and Incipient Phase Separation in the Thermodynamic Properties of the Hubbard Model

    Full text link
    Transport measurements on the cuprates suggest the presence of a quantum critical point hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single particle quantities, such as the spectral function, the quasiparticle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudogap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbor hopping t' we find a classical critical point at temperature T_c. This classical critical point is found to be associated with a phase separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudogap state, respectively. Since the critical temperature T_c extrapolates to zero as t' vanishes, we conclude that a quantum critical point connects the Fermi-liquid to the pseudogap region, and that the marginal-Fermi-liquid behavior in its vicinity is the analogous of the supercritical region in the liquid-gas transition.Comment: 18 pages, 9 figure

    Surface Half-Metallicity of CrAs in the Zinc-Blende Structure

    Full text link
    The development of new techniques such as the molecular beam epitaxy have enabled the growth of thin films of materials presenting novel properties. Recently it was made possible to grow a CrAs thin-film in the zinc-blende structure. In this contribution, the full-potential screened KKR method is used to study the electronic and magnetic properties of bulk CrAs in this novel phase as well as the Cr and As terminated (001) surfaces. Bulk CrAs is found to be half-ferromagnetic for all three GaAs, AlAs and InAs experimental lattice constants with a total spin magnetic moment of 3 μB\mu_B. The Cr-terminated surface retains the half-ferromagnetic character of the bulk, while in the case of the As-termination the surface states destroy the gap in the minority-spin band.Comment: 4 pages, 2 figures, new text, new titl

    Search for spin gapless semiconductors: The case of inverse Heusler compounds

    Get PDF
    We employ ab-initio electronic structure calculations to search for spin gapless semiconductors, a recently identified new class of materials, among the inverse Heusler compounds. The occurrence of this property is not accompanied by a general rule and results are materials specific. The six compounds identified show semiconducting behavior concerning the spin-down band structure and in the spin-up band structure the valence and conduction bands touch each other leading to 100% spin-polarized carriers. Moreover these six compounds should exhibit also high Curie temperatures and thus are suitable for spintronics applications.Comment: Submitted to Applied Physics Letter

    Orbital magnetism in the half-metallic Heusler alloys

    Full text link
    Using the fully-relativistic screened Korringa-Kohn-Rostoker method I study the orbital magnetism in the half-metallic Heusler alloys. Orbital moments are almost completely quenched and they are negligible with respect to the spin moments. The change in the atomic-resolved orbital moments can be easily explained in terms of the spin-orbit strength and hybridization effects. Finally I discuss the orbital and spin moments derived from X-ray magnetic circular dichroism experiments

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Thermodynamics of the Quantum Critical Point at Finite Doping in the 2D Hubbard Model: A Dynamical Cluster Approximation Study

    Get PDF
    We study the thermodynamics of the two-dimensional Hubbard model within the dynamical cluster approximation. We use continuous time quantum Monte Carlo as a cluster solver to avoid the systematic error which complicates the calculation of the entropy and potential energy (double occupancy). We find that at a critical filling, there is a pronounced peak in the entropy divided by temperature, S/T, and in the normalized double occupancy as a function of doping. At this filling, we find that specific heat divided by temperature, C/T, increases strongly with decreasing temperature and kinetic and potential energies vary like T^2 ln(T). These are all characteristics of quantum critical behavior.Comment: 4 pages, 4 figures. Submitted to Phys. Rev. B Rapid Communications on June 27, 200

    Breakdown of Strong-Coupling Perturbation Theory in Doped Mott Insulators

    Full text link
    We show that doped Mott insulators, such as the copper-oxide superconductors, are asymptotically slaved in that the quasiparticle weight, ZZ, near half-filling depends critically on the existence of the high energy scale set by the upper Hubbard band. In particular, near half filling, the following dichotomy arises: Z0Z\ne 0 when the high energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high energy scale arises from quantum interference between electronic excitations across the Mott gap. Broad spectral features seen in photoemission in the normal state of the cuprates are argued to arise from high energy slavery.Comment: Published versio

    Epitaxial Co2Cr0.6Fe0.4Al thin films and magnetic tunneling junctions

    Full text link
    Epitaxial thin films of the theoretically predicted half metal Co2Cr0.6Fe0.4Al were deposited by dc magnetron sputtering on different substrates and buffer layers. The samples were characterized by x-ray and electron beam diffraction (RHEED) demonstrating the B2 order of the Heusler compound with only a small partition of disorder on the Co sites. Magnetic tunneling junctions with Co2Cr0.6Fe0.4Al electrode, AlOx barrier and Co counter electrode were prepared. From the Julliere model a spin polarisation of Co2Cr0.6Fe0.4Al of 54% at T=4K is deduced. The relation between the annealing temperature of the Heusler electrodes and the magnitude of the tunneling magnetoresistance effect was investigated and the results are discussed in the framework of morphology and surface order based of in situ STM and RHEED investigations.Comment: accepted by J. Phys. D: Appl. Phy
    corecore