547 research outputs found
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Recommended from our members
Gas-Particle Partitioning of Atmospheric Hg(II) and Its Effect on Global Mercury Deposition
Atmospheric deposition of Hg(II) represents a major input of mercury to surface environments. The phase of Hg(II) (gas or particle) has important implications for deposition. We use long-term observations of reactive gaseous mercury (RGM, the gaseous component of Hg(II)), particle-bound mercury (PBM, the particulate component of Hg(II)), fine particulate matter (PM2.5), and temperature (T) at five sites in North America to derive an empirical gas-particle partitioning relationship log10(K−1) = (10±1)–(2500±300)/T where K = (PBM/PM2.5)/RGM with PBM and RGM in common mixing ratio units, PM2.5 in μg m−3, and T in K. This relationship is within the range of previous work but is based on far more extensive data from multiple sites. We implement this empirical relationship in the GEOS-Chem global 3-D Hg model to partition Hg(II) between the gas and particle phases. The resulting gas-phase fraction of Hg(II) ranges from over 90 % in warm air with little aerosol to less than 10 % in cold air with high aerosol. Hg deposition to high latitudes increases because of more efficient scavenging of particulate Hg(II) by precipitating snow. Model comparison to Hg observations at the North American surface sites suggests that subsidence from the free troposphere (warm air, low aerosol) is a major factor driving the seasonality of RGM, while elevated PBM is mostly associated with high aerosol loads. Simulation of RGM and PBM at these sites is improved by including fast in-plume reduction of Hg(II) emitted from coal combustion and by assuming that anthropogenic particulate Hg(p) behaves as semi-volatile Hg(II) rather than as a refractory particulate component. We improve the simulation of Hg wet deposition fluxes in the US relative to a previous version of GEOS-Chem; this largely reflects independent improvement of the washout algorithm. The observed wintertime minimum in wet deposition fluxes is attributed to inefficient snow scavenging of gas-phase Hg(II).Earth and Planetary SciencesEngineering and Applied Science
Global Three-Dimensional Water Vapor Feature-Tracking for Horizontal Winds Using Hyperspectral Infrared Sounder Data From Overlapped Tracks of Two Satellites
The lack of measurements of three-dimensional (3D) distribution of horizontal wind vectors is a major challenge in atmospheric science. Here, we develop an algorithm to retrieve winds for nine pressure levels at 1° grid spacing from 70°N to 70°S. The retrieval is done by tracking water vapor from the hyperspectral Cross-track Infrared Sounder aboard two polar satellites (NOAA-20 and Suomi-NPP) that have overlapped tracks separated by 50 min. We impose a gross error check by flagging retrievals that are too different from ERA-5 reanalysis. Testing the algorithm for the first week of January and July 2020 indicates that our algorithm yields 104 wind profiles per day and these 3D winds qualitatively agree with ERA-5. Compared with radiosonde data, the errors are within the range of reported errors of cloud-tracking winds
Quantifying Missing Heritability at Known GWAS Loci
Recent work has shown that much of the missing heritability of complex traits can be resolved by estimates of heritability explained by all genotyped SNPs. However, it is currently unknown how much heritability is missing due to poor tagging or additional causal variants at known GWAS loci. Here, we use variance components to quantify the heritability explained by all SNPs at known GWAS loci in nine diseases from WTCCC1 and WTCCC2. After accounting for expectation, we observed all SNPs at known GWAS loci to explain 1.29 X more heritability than GWAS-associated SNPs on average (P = 3.3 X 10[superscript -5]). For some diseases, this increase was individually significant:2.07 X for Multiple Sclerosis (MS) (P = 6.5 X 10 [superscript -9]) and for Crohn's Disease (CD) (P = 1.3 X 10[superscript -3]); all analyses of autoimmune diseases excluded the well-studied MHC region. Additionally, we found that GWAS loci from other related traits also explained significant heritability. The union of all autoimmune disease loci explained 7.15 X more MS heritability than known MS SNPs (P 20,000 Rheumatoid Arthritis (RA) samples typed on ImmunoChip, with 2.37 X more heritability from all SNPs at GWAS loci (P = 2.3 X 10[superscript -6]) and more heritability from all autoimmune disease loci (P < 1 X 10[superscript -16]) compared to known RA SNPs (including those identified in this cohort). Our methods adjust for LD between SNPs, which can bias standard estimates of heritability from SNPs even if all causal variants are typed. By comparing adjusted estimates, we hypothesize that the genome-wide distribution of causal variants is enriched for low-frequency alleles, but that causal variants at known GWAS loci are skewed towards common alleles. These findings have important ramifications for fine-mapping study design and our understanding of complex disease architecture.National Institutes of Health (U.S.) (Grant R03HG006731)National Institutes of Health (U.S.) (Fellowship F32GM106584
Recommended from our members
The TIGGE project and its achievements
TIGGE was a major component of the THORPEX (The Observing System Research and Predictability Experiment) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics.
The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a Multi-model Grand Ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed.
TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world, and are a focus of multi-model ensemble research. Their extra-tropical transition also has a major impact on skill of mid-latitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extra-tropical cyclones and storm tracks.
Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles.
Finally the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill
Neutrophils exhibit distinct phenotypes toward chitosans with different degrees of deacetylation: implications for cartilage repair
Introduction Osteoarthritis is characterized by the progressive destruction of cartilage in the articular joints. Novel therapies that promote resurfacing of exposed bone in focal areas are of interest in osteoarthritis because they may delay the progression of this disabling disease in patients who develop focal lesions. Recently, the addition of 80% deacetylated chitosan to cartilage microfractures was shown to promote the regeneration of hyaline cartilage. The molecular mechanisms by which chitosan promotes cartilage regeneration remain unknown. Because neutrophils are transiently recruited to the microfracture site, the effect of 80% deacetylated chitosan on the function of neutrophils was investigated. Most studies on neutrophils use preparations of chitosan with an uncertain degree of deacetylation. For therapeutic purposes, it is of interest to determine whether the degree of deacetylation influences the response of neutrophils to chitosan. The effect of 95% deacetylated chitosan on the function of neutrophils was therefore also investigated and compared with that of 80% deacetylated chitosan.Methods Human blood neutrophils from healthy donors were isolated by centrifugation on Ficoll-Paque. Chemotaxis was performed using the chemoTX system. Production of superoxide anions was evaluated using the cytochrome c reduction assay. Degranulation was determined by evaluating the release of myeloperoxidase and lactoferrin. The internalization of fluorescently labelled 80% deacetylated chitosan by neutrophils was studied by confocal microscopy.Results Neutrophils were dose dependently attracted to 80% deacetylated chitosan. In contrast, 95% deacetylated chitosan was not chemotactic for neutrophils. Moreover, the majority of the chemotactic effect of 80% deacetylated chitosan was mediated by phospholipase-A(2)-derived bioactive lipids. Contrary to the induction of chemotaxis, neither 80% nor 95% deacetylated chitosan activated the release of granule enzymes or the generation of active oxygen species. Despite the distinct response of neutrophils toward 80% and 95% deacetylated chitosan, both chitosans were internalized by neutrophils.Conclusions Eighty per cent deacetylated chitosan induces a phenotype in neutrophils that is distinct from the classical phenotype induced by pro-inflammatory agents. Our observations also indicate that the degree of deacetylation is an important factor to consider in the use of chitosan as an accelerator of repair because neutrophils do not respond to 95% deacetylated chitosan
Molecular dynamics simulation of the early stages of the synthesis of periodic mesoporous silica
We present results of detailed atomistic modeling of the early stages of the synthesis of periodic mesoporous silica using molecular dynamics. Our simulations lead to the proposal of a mechanism that validates several previous experimental and modeling studies and answers many controversial issues regarding the synthesis of mesoporous silicas. In particular, we show that anionic silicates interact very strongly with cationic surfactants and, significantly adsorb on the surface of micelles, displacing a fraction of previously bound bromide counterions. This induces an increase in micelle size and also enhances silica condensation at the micelle surface. The presence of larger silica aggregates in solution further promotes the growth of micelles and, by binding to surfactant molecules in different micelles, their aggregation. This work demonstrates the crucial role played by silica in influencing, by way of a cooperative templating mechanism, the structure of the eventual liquid-crystal phase, which in turn determines the structure of the porous material
APOL1 renal risk variants are associated with obesity and body composition in African ancestry adults: An observational genotype-phenotype association study
While increased obesity prevalence among persons of African ancestry (AAs) compared to persons of European ancestry (EAs) is linked to social, environmental and behavioral factors, there are no gene variants that are common and significantly associated with obesity in AA populations. We sought to explore the association between ancestry specific renal risk variants in the apolipoprotein L1 (APOL1) gene with obesity related traits in AAs. We conducted a genotype-phenotype association study from 3 electronic medical record linked cohorts (BioMe Biobank, BioVU, nuGENE); randomized controlled trials (genetic testing to understand and address renal disease disparities) and prospective cohort study (Jackson Heart Study). We analyzed association of APOL1 renal risk variants with cross-sectional measures of obesity (average body mass index (BMI), and proportion of overweight and obesity) and with measures of body composition (in Jackson Heart Study).We had data on 11,930 self-reported AA adults. Across cohorts, mean age was from 42 to 49 years and percentage female from 58% to 75.3%. Individuals who have 2 APOL1 risk alleles (14% of AAs) have 30% higher obesity odds compared to others (recessive model adjusted odds ratio 1.30; 95% confidence interval 1.16-1.41; P = 2.75 × 10-6). An additive model better fit the association, in which each allele (47% of AAs) increases obesity odds by 1.13-fold (adjusted odds ratio 1.13; 95% confidence interval 1.07-1.19; P = 3.07 × 10-6) and increases BMI by 0.36 kg/m2(∼1 kg, for 1.7 m height; P = 2 × 10-4). APOL1 alleles are not associated with refined body composition traits overall but are significantly associated with fat free mass index in women [0.30 kg/m2increment per allele; P = .03].Thus, renal risk variants in the APOL1 gene, found in nearly half of AAs, are associated with BMI and obesity in an additive manner. These variants could, either on their own or interacting with environmental factors, explain a proportion of ethnic disparities in obesity
New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease
Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.</jats:p
- …
