586 research outputs found
Design and analysis report for the RL10-2B breadboard low thrust engine
The breadboard low thrust RL10-2B engine is described. A summary of the analysis and design effort to define the multimode thrust concept applicable to the requirements for the upper stage vehicles is provided. Baseline requirements were established for operation of the RL10-2B engine under the following conditions: (1) tank head idle at low propellant tank pressures without vehicle propellant conditioning or settling thrust; (2) pumped idle at a ten percent thrust level for low G deployment and/or vehicle tank pressurization; and (3) full thrust (15,000 lb.). Several variations of the engine configuration were investigated and results of the analyses are included
Advanced engine study program
A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio
Low-energy Compton scattering on the nucleon and sum rules
The Gerasimov-Drell-Hearn and Baldin-Lapidus sum rules are evaluated in the
dressed K-matrix model for photon-induced reactions on the nucleon. For the
first time the sum of the electric and magnetic polarisabilities
and the forward spin polarisability are explicitly calculated in two
alternative ways -- from the sum rules and from the low-energy expansion of the
real Compton scattering amplitude -- within the {\em same} framework. The two
methods yield compatible values for but differ somewhat for
. Consistency between the two ways of determining the
polarisabilities is a measure of the extent to which basic symmetries of the
model are obeyed.Comment: 9 pages, 4 figures, using REVTeX. More concise version, results
unchanged. To appear in Phys. Rev.
Dispersion Effects in Nucleon Polarisabilities
We present a formalism to extract the dynamical nucleon polarisabilities
defined via a multipole expansion of the structure amplitudes in nucleon
Compton scattering. In contradistinction to the static polarisabilities,
dynamical polarisabilities gauge the response of the internal degrees of
freedom of a composed object to an external, real photon field of arbitrary
energy. Being energy dependent, they therefore contain additional information
about dispersive effects induced by internal relaxation mechanisms, baryonic
resonances and meson production thresholds of the nucleon. We give explicit
formulae to extract the dynamical electric and magnetic dipole as well as
quadrupole polarisabilities from low energy nucleon Compton scattering up to
the one pion production threshold and discuss the connection to the definition
of static nucleon polarisabilities. As a concrete example, we examine the
results of leading order Heavy Baryon Chiral Perturbation Theory for the four
leading spin independent iso-scalar polarisabilities of the nucleon. Finally,
we consider the possible r{\^o}le of energy dependent effects in low energy
extractions of the iso-scalar dipole polarisabilities from Compton scattering
on the deuteron.Comment: 17 pages LaTeX2e with 2 figures, using includegraphicx (5 .eps
files). Minor corrections, references updated. Contents identical to version
to appear in Phys. Rev. C 65, spelling differen
Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model
A microscopic calculation of Compton scattering on the nucleon is presented
which encompasses the lowest energies -- yielding nucleon polarizabilities --
and extends to energies of the order of 600 MeV. We have used the covariant
"Dressed K-Matrix Model" obeying the symmetry properties which are appropriate
in the different energy regimes. In particular, crossing symmetry, gauge
invariance and unitarity are satisfied. The extent of violation of analyticity
(causality) is used as an expansion parameter.Comment: 35 pages, 15 figures, using REVTeX. Modified version to be published
in Phys. Rev. C, more extensive comparison with data for Compton scattering,
all results unchange
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Tubular copper thrust chamber design study
The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer
Observation of the Higgs Boson of strong interaction via Compton scattering by the nucleon
It is shown that the Quark-Level Linear Model (QLLM) leads
to a prediction for the diamagnetic term of the polarizabilities of the nucleon
which is in excellent agreement with the experimental data. The bare mass of
the meson is predicted to be MeV and the two-photon
width keV. It is argued that the
mass predicted by the QLLM corresponds to the reaction, i.e. to a -channel pole of the reaction.
Large -angle Compton scattering experiments revealing effects of the
meson in the differential cross section are discussed. Arguments are presented
that these findings may be understood as an observation of the Higgs boson of
strong interaction while being part of the constituent quark.Comment: 17 pages, 6 figure
Dispersion relations in real and virtual Compton scattering
A unified presentation is given on the use of dispersion relations in the
real and virtual Compton scattering processes off the nucleon. The way in which
dispersion relations for Compton scattering amplitudes establish connections
between low energy nucleon structure quantities, such as polarizabilities or
anomalous magnetic moments, and the nucleon excitation spectrum is reviewed. We
discuss various sum rules for forward real and virtual Compton scattering, such
as the Gerasimov-Drell-Hearn sum rule and its generalizations, the
Burkhardt-Cottingham sum rule, as well as sum rules for forward nucleon
polarizabilities, and review their experimental status. Subsequently, we
address the general case of real Compton scattering (RCS). Various types of
dispersion relations for RCS are presented as tools for extracting nucleon
polarizabilities from the RCS data. The information on nucleon polarizabilities
gained in this way is reviewed and the nucleon structure information encoded in
these quantities is discussed. The dispersion relation formalism is then
extended to virtual Compton scattering (VCS). The information on generalized
nucleon polarizabilities extracted from recent VCS experiments is described,
along with its interpretation in nucleon structure models. As a summary, the
physics content of the existing data is discussed and some perspectives for
future theoretical and experimental activities in this field are presented.Comment: 120 pages, 42 figures, to appear in Phys. Re
- …
