550 research outputs found

    Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    No full text
    International audienceUsing Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells

    Higher dimensional abelian Chern-Simons theories and their link invariants

    Full text link
    The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l+34l+3, whose parameter kk is quantized. The generalized Wilson (2l+1)(2l+1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l+1)(2l+1)-loops, first on closed (4l+3)(4l+3)-manifolds through a novel geometric computation, then on R4l+3\mathbb{R}^{4l+3} through an unconventional field theoretic computation.Comment: 40 page

    Parallel spinors and holonomy groups

    Full text link
    In this paper we complete the classification of spin manifolds admitting parallel spinors, in terms of the Riemannian holonomy groups. More precisely, we show that on a given n-dimensional Riemannian manifold, spin structures with parallel spinors are in one to one correspondence with lifts to Spin_n of the Riemannian holonomy group, with fixed points on the spin representation space. In particular, we obtain the first examples of compact manifolds with two different spin structures carrying parallel spinors.Comment: 10 pages, LaTeX2

    Covariance and Fisher information in quantum mechanics

    Get PDF
    Variance and Fisher information are ingredients of the Cramer-Rao inequality. We regard Fisher information as a Riemannian metric on a quantum statistical manifold and choose monotonicity under coarse graining as the fundamental property of variance and Fisher information. In this approach we show that there is a kind of dual one-to-one correspondence between the candidates of the two concepts. We emphasis that Fisher informations are obtained from relative entropies as contrast functions on the state space and argue that the scalar curvature might be interpreted as an uncertainty density on a statistical manifold.Comment: LATE

    Arteriography during ex vivo renal perfusion A complication

    Get PDF
    A case of bilateral renal-cell carcinoma unsuccessfully treated with bench surgery is reported. The reason for failure was apparently the toxicity of the contrast media used during the ex vivo arteriographic studies. © 1973

    A natural Finsler--Laplace operator

    Full text link
    We give a new definition of a Laplace operator for Finsler metric as an average with regard to an angle measure of the second directional derivatives. This definition uses a dynamical approach due to Foulon that does not require the use of connections nor local coordinates. We show using 1-parameter families of Katok--Ziller metrics that this Finsler--Laplace operator admits explicit representations and computations of spectral data.Comment: 25 pages, v2: minor modifications, changed the introductio

    Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

    Get PDF
    We introduce the notion of high-order deterministic top-down tree transducers (HODT) whose outputs correspond to single-typed lambda-calculus formulas. These transducers are natural generalizations of known models of top-tree transducers such as: Deterministic Top-Down Tree Transducers, Macro Tree Transducers, Streaming Tree Transducers... We focus on the linear restriction of high order tree transducers with look-ahead (HODTR_lin), and prove this corresponds to tree to tree functional transformations defined by Monadic Second Order (MSO) logic. We give a specialized procedure for the composition of those transducers that uses a flow analysis based on coherence spaces and allows us to preserve the linearity of transducers. This procedure has a better complexity than classical algorithms for composition of other equivalent tree transducers, but raises the order of transducers. However, we also indicate that the order of a HODTR_lin can always be bounded by 3, and give a procedure that reduces the order of a HODTR_lin to 3. As those resulting HODTR_lin can then be transformed into other equivalent models, this gives an important insight on composition algorithm for other classes of transducers. Finally, we prove that those results partially translate to the case of almost linear HODTR: the class corresponds to the class of tree transformations performed by MSO with unfolding (not closed by composition), and provide a mechanism to reduce the order to 3 in this case

    Quantum projection filter for a highly nonlinear model in cavity QED

    Get PDF
    Both in classical and quantum stochastic control theory a major role is played by the filtering equation, which recursively updates the information state of the system under observation. Unfortunately, the theory is plagued by infinite-dimensionality of the information state which severely limits its practical applicability, except in a few select cases (e.g. the linear Gaussian case.) One solution proposed in classical filtering theory is that of the projection filter. In this scheme, the filter is constrained to evolve in a finite-dimensional family of densities through orthogonal projection on the tangent space with respect to the Fisher metric. Here we apply this approach to the simple but highly nonlinear quantum model of optical phase bistability of a stongly coupled two-level atom in an optical cavity. We observe near-optimal performance of the quantum projection filter, demonstrating the utility of such an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found at http://minty.caltech.edu/papers.ph

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page

    Quantum Mechanics of Yano tensors: Dirac equation in curved spacetime

    Full text link
    In spacetimes admitting Yano tensors the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank two, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors.Comment: 1+32 pages, no figures. Accepted for publication on Classical and Quantum Gravity. New title and abstract. Some material has been moved to the Appendix. Concrete formulas for Yano tensors on some special holonomy manifolds have been provided. Some corrections included, bibliography enlarge
    corecore