29 research outputs found
Effects of Dynamic Vulcanization on Tensile Properties, Morphology and Natural Weathering of Polypropylene/Recycled Acrylonitrile Butadiene Rubber (PP/NBRr) Blends
Electron-beam irradiation of blends of polypropylene with recycled acrylonitrile-butadiene rubber
Reinforcing effect of amine‐functionalized and carboxylated porous graphene on toughness, thermal stability, and electrical conductivity of epoxy‐based nanocomposites
Hello from the Other Side: Have Myanmar's Mobile Adoption Trends Changed Over the Years?
Nanoparticle-Enhanced Engine Oils for Automotive Applications: Thermal Conductivity and Heat Capacity Improvements
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and reduced graphene oxide (rGO) nanoparticles on 10W30 Mobil engine oil. In this study, the effect of nanoparticle concentrations at different mass fractions (0.01, 0.05, and 0.1) was examined within the temperature range 30–120 °C. The nanofluids were prepared using a two-step direct mixing method and thermal properties were measured using a LAMBDA thermal conductivity meter, which uses the transient hot wire method according to the ISO standards. Due to the low concentrations of the nanofluids, surfactants were not required at all, and the stability of the nanofluids was visually monitored over a period of four weeks. Accordingly, the largest improvement in thermal conductivity occurred with TiO2/10W30 at a mass fraction of 0.1 wt.% at 80 °C, and the specific heat capacity improved due to Fe2O3/10W30 addition at a mass fraction of 0.1 at 70 °C; these were 5.8% and 14.4%, respectively, for the base oil. Thermal diffusivity remained largely unaffected by the addition of the nanoparticles, and fullerene C60 showed no significant effect on any thermal property. It was concluded that the thermal properties of the engine oil were considerably enhanced by the added nanoparticles at different weight fractions and temperature values
Structure and topography of thermally reduced graphene oxide reinforced poly(vinyl alcohol‐ g
From Nature to Innovation: Advances in Nanocellulose Extraction and Its Multifunctional Applications
Nanocellulose obtained from renewable and abundant biomass has garnered significant attention as a sustainable material with exceptional properties and diverse applications. This review explores the key aspects of nanocellulose, focusing on its extraction methods, applications, and future prospects. The synthesis of nanocellulose involves mechanical, chemical, and biological techniques, each uniquely modifying the cellulose structure to isolate cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). These methods provide tailored characteristics, enabling applications across a wide range of industries. Nanocellulose’s remarkable properties, including high mechanical strength, large surface area, thermal stability, and biodegradability, have propelled its use in packaging, electronics, biomedicine, and environmental remediation. It has shown immense potential in enhancing the mechanical performance of composites, improving water purification systems, and serving as a scaffold for tissue engineering and drug delivery. However, challenges related to large-scale production, functionalization, regulatory frameworks, and safety concerns persist, necessitating further research and innovation. This review emphasizes the need for sustainable production strategies and advanced functionalization techniques to harness nanocellulose’s full potential. As an eco-friendly, high-performance material, nanocellulose presents a promising avenue for addressing global sustainability challenges while offering transformative solutions for various industries
Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing
The extensive accumulation of plastic waste causes serious environmental problems, leading to growing interest in biodegradable alternatives. In this study, the structural, chemical, and crystalline characteristics of a pulp-based material incorporating sugarcane bagasse ash (SCBA) were investigated using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Mechanical properties of the materials were investigated through compression, tensile, and bending tests in order to assess their strength and flexibility, while biodegradability was evaluated through soil burial tests. The results indicate that SCBA addition enhances compressive strength, with optimal performance obtained at 15% SCBA content, while tensile and bending strengths showed an enhancement at 5% content. FTIR and XRD analyses suggested an increase in amorphous regions and notable microstructural interactions between SCBA particles and cellulose fibers, particularly at a 10% concentration. SEM images further confirmed effective particle dispersion and improved porosity in the composite materials. Furthermore, samples incorporating SCBA exhibited superior biodegradability compared to pure pulp. Overall, these findings highlight that incorporating 10–15% SCBA provides a promising balance between mechanical integrity and environmental sustainability, offering a viable strategy for developing eco-friendly, high-performance packaging materials
Advancements in Bio-Nanotechnology: Green Synthesis and Emerging Applications of Bio-Nanoparticles
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these organisms for nanoparticle synthesis offers an eco-friendly and sustainable alternative to conventional chemical and physical methods, which often involve toxic reagents and high energy consumption. Phytochemicals present in plant extracts, unique metabolic pathways, and biomolecules in bacteria and fungi, and the rich biochemical composition of algae facilitate the production of nanoparticles with diverse shapes and sizes. This review further explores the wide-ranging applications of BNPs in various fields like therapeutics, fuel cells, energy generation, and wastewater treatment. In therapeutics, BNPs have shown efficacy in antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In the energy sector, BNPs are being integrated into fuel cells and other energy generation systems like bio-diesel to improve efficiency and sustainability. Their catalytic properties and large surface area enhance the performance of these devices. Wastewater treatment is another critical area where BNPs are employed for the removal of heavy metals, organic pollutants, and microbial contaminants, offering a cost-effective and environmentally friendly solution to water purification. This comprehensive review highlights the potential of bio-nanoparticles synthesized through green methods. It highlights the need for further research to optimize synthesis processes, understand mechanisms of action, and expand the scope of their applications. BNPs can be utilized to address advantages and some of the pressing challenges in medicine, energy, and environmental sustainability, paving the way for innovative and sustainable technological advancements in future prospects
