58 research outputs found
Technological and Economic Optimization of Functional Ready to Eat Meal
A ready meal based on precooked gluten-free pasta with a yogurt-based sauce enriched with probiotic bacteria was developed and optimized from both the nutritional and sensory point of view. Conceptually, the work aims at understanding the innovation stress in consumers and check whether the “perfect beauty” of a complex food product innovation, which is extremely admirable from a food technology point of view, could be effectively appreciated by consumers. In other words, we are interested in knowing whether there exists a gap between science-based or ”innovation-leading” technologists’ food preferences and consumers’ preferences, which are taste, information, price and promotion driven
Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘coalho’ cheese shelf life
This work aimed at the characterisation of a nanolaminate
coating produced by the layer-by-layer methodology
and its evaluation on the preservation of ‘Coalho’ cheese.
Initially, five alternate layers of alginate and lysozyme were
assembled in an aminolysed/charged polyethylene terephthalate
(A/C PET) and physically characterised by UV/VIS
spectroscopy, contact angle, water vapour (WVTR) and oxygen
(OTR) transmission rates and scanning electron microscopy.
Afterwards, the same methodology was used to
apply the nano-laminate coating in ‘Coalho’ cheese and its
shelf life was evaluated during 20 days in terms of mass
loss, pH, lipid peroxidation, titratable acidity and microbial
count. UV/VIS spectroscopy and contact angle analyses
confirmed the layers’ deposition and the successful assembly
of nano-laminate coating on A/C PET surface. The coating
presented WVTR and OTR values of 1.03×10−3 and 1.28×
10−4 g m−2 s−1, respectively. After 20 days, coated cheese
showed lower values of mass loss, pH, lipidic peroxidation,
microorganisms’ proliferation and higher titratable acidity in
comparison with uncoated cheese. These results suggest that
gas barrier and antibacterial properties of alginate/lysozyme
nanocoating can be used to extend the shelf life of ‘Coalho’
cheese.The author Bartolomeu G. de S. Medeiros is recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES-Brazil). The author Marthyna P. Souza is recipient of a scholarship from Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) and was recipient of a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil). The authors Ana C. Pinheiro, Ana I. Bourbon and Miguel A. Cerqueira are recipients of a fellowship (SFRH/BD/48120/2008, SFRH/BD/73178/2010 and SFRH/BPD/72753/2010, respectively), supported by Fundacao para a Ciencia e Tecnologia, POPH-QREN and FSE (FCT, Portugal). Maria G. Carneiro-da-Cunha express is gratitude to the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for research grant. The present work was supported by CAPES/PROCAD/NF/1415/2007. The support of EU Cost Action FA0904 is gratefully acknowledged
Use of Antimicrobial Treatments and Modified Atmosphere to Extend the Shelf Life of Fresh Sausages
Use of sodium lactate and modified atmosphere packaging for extending the shelf life of ready-to-cook fresh meal
In this work, the combined effects of sodium lactate and modified atmosphere packaging (MAP) in extending the shelf life of a ready-to-cook fresh skewer, made up of raw pork chops and semi-dried vegetable mix (i.e. zucchini, peppers and tomatoes), were investigated. In the first experimental step, a sodium lactate solution was used to dip pork chops at three different concentrations: 20, 40 and 60% w/w. The second part of the work was focused on the use of MAP. In particular, the following MAPs were tested: MA1 (50%O2/30%CO2/20%N2), MA2 (70%O2/30%CO2), MA3 (30%O2/70%CO2) and MA4 (30%/30%CO2/40%N2). Finally, the optimal concentration of sodium lactate and the best gas composition were combined. The samples were stored at 4°C; their microbial and sensory qualities were monitored along the entire observation period. The results indicate that the shelf life of the investigated ready-to-cook meal can be extended by approximately 83%, if compared with the control skewer packaged in air. The best preservation strategy is the combination of dipping of meat pieces in 40% sodium lactate solution and packaging under MA1
Ready-to-cook fresh meal: study for shelf life prolongation
In this study, to preserve the quality of a fresh meal based on a mix of meatballs and semi-dry vegetables, two main strategies were combined: during process the meat before grinding was dipped in sodium lactate and during packaging different modified atmospheres were applied (30:70 CO2:N2, 70:30 CO2:O2, 5:5:90 O2:CO2:N2). The parameters monitored during the storage at 4 °C were the headspace gas composition, the microbial loads (Total viable count, Pseudomonas spp., lactic acid bacteria and Enterobacteriaceae), the pH and the sensory quality. Overall, the results indicate that the sodium lactate acted in synergy with MAP improving above all the microbial quality. A significant shelf life prolongation was obtained with 30 % CO2 in the package, corresponding to a 168 % shelf life increase compared to the control sample in air
A STUDY ON THE SYNERGY OF MODIFIED ATMOSPHERE PACKAGING AND CHITOSAN ON STRACCIATELLA SHELF LIFE
- …
