86 research outputs found
Development of a Multiplex Ligation-Dependent Probe Amplification Assay for Diagnosis and Estimation of the Frequency of Spinocerebellar Ataxia Type 15
Host gene expression signatures to identify infection type and organ dysfunction in children evaluated for sepsis: a multicentre cohort study.
Rapid screening for chromosomal aneuploidies using array-MLPA
<p>Abstract</p> <p>Background</p> <p>Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.</p> <p>Methods</p> <p>We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.</p> <p>Results</p> <p>In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.</p> <p>Conclusions</p> <p>Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.</p
A Genotype-First Approach for the Molecular and Clinical Characterization of Uncommon De Novo Microdeletion of 20q13.33
Background: Subtelomeric deletions of the long arm of chromosome 20 are rare, with only 11 described in the literature. Clinical features of individuals with these microdeletions include severe limb malformations, skeletal abnormalities, growth retardation, developmental and speech delay, mental retardation, seizures and mild, non-specific dysmorphic features. Methodology/Principal Findings: We characterized microdeletions at 20q13.33 in six individuals referred for genetic evaluation of developmental delay, mental retardation, and/or congenital anomalies. A comparison to previously reported cases of 20q13.33 microdeletion shows phenotypic overlap, with clinical features that include mental retardation, developmental delay, speech and language deficits, seizures, and behavior problems such as autistic spectrum disorder. There does not appear to be a clinically recognizable constellation of dysmorphic features among individuals with subtelomeric 20q microdeletions. Conclusions/Significance: Based on genotype-phenotype correlation among individuals in this and previous studies, we discuss several possible candidate genes for specific clinical features, including ARFGAP1, CHRNA4 and KCNQ2 and neurodevelopmental deficits. Deletion of this region may play an important role in cognitive development
Host gene expression signatures to identify infection type and organ dysfunction in children evaluated for sepsis: a multicentre cohort study.
BackgroundSepsis is defined as dysregulated host response to infection that leads to life-threatening organ dysfunction. Biomarkers characterising the dysregulated host response in sepsis are lacking. We aimed to develop host gene expression signatures to predict organ dysfunction in children with bacterial or viral infection.MethodsThis cohort study was done in emergency departments and intensive care units of four hospitals in Queensland, Australia, and recruited children aged 1 month to 17 years who, upon admission, underwent a diagnostic test, including blood cultures, for suspected sepsis. Whole-blood RNA sequencing of blood was performed with Illumina NovaSeq (San Diego, CA, USA). Samples with completed phenotyping, monitoring, and RNA extraction by March 31, 2020, were included in the discovery cohort; samples collected or completed thereafter and by Oct 27, 2021, constituted the Rapid Paediatric Infection Diagnosis in Sepsis (RAPIDS) internal validation cohort. An external validation cohort was assembled from RNA sequencing gene expression count data from the observational European Childhood Life-threatening Infectious Disease Study (EUCLIDS), which recruited children with severe infection in nine European countries between 2012 and 2016. Feature selection approaches were applied to derive novel gene signatures for disease class (bacterial vs viral infection) and disease severity (presence vs absence of organ dysfunction 24 h post-sampling). The primary endpoint was the presence of organ dysfunction 24 h after blood sampling in the presence of confirmed bacterial versus viral infection. Gene signature performance is reported as area under the receiver operating characteristic curves (AUCs) and 95% CI.FindingsBetween Sept 25, 2017, and Oct 27, 2021, 907 patients were enrolled. Blood samples from 595 patients were included in the discovery cohort, and samples from 312 children were included in the RAPIDS validation cohort. We derived a ten-gene disease class signature that achieved an AUC of 94·1% (95% CI 90·6-97·7) in distinguishing bacterial from viral infections in the RAPIDS validation cohort. A ten-gene disease severity signature achieved an AUC of 82·2% (95% CI 76·3-88·1) in predicting organ dysfunction within 24 h of sampling in the RAPIDS validation cohort. Used in tandem, the disease class and disease severity signatures predicted organ dysfunction within 24 h of sampling with an AUC of 90·5% (95% CI 83·3-97·6) for patients with predicted bacterial infection and 94·7% (87·8-100·0) for patients with predicted viral infection. In the external EUCLIDS validation dataset (n=362), the disease class and disease severity predicted organ dysfunction at time of sampling with an AUC of 70·1% (95% CI 44·1-96·2) for patients with predicted bacterial infection and 69·6% (53·1-86·0) for patients with predicted viral infection.InterpretationIn children evaluated for sepsis, novel host transcriptomic signatures specific for bacterial and viral infection can identify dysregulated host response leading to organ dysfunction.FundingAustralian Government Medical Research Future Fund Genomic Health Futures Mission, Children's Hospital Foundation Queensland, Brisbane Diamantina Health Partners, Emergency Medicine Foundation, Gold Coast Hospital Foundation, Far North Queensland Foundation, Townsville Hospital and Health Services SERTA Grant, and Australian Infectious Diseases Research Centre
Extreme Outer Connected Geodesic Graphs
For a connected graph G of order at least two, a set S of vertices in a graph G is said to be an outer connected geodetic set if S is a geodetic set of G and either S = V or the subgraph induced by V − S is connected. The minimum cardinality of an outer connected geodetic set of G is the outer connected geodetic number of G and is denoted by goc(G). The number of extreme vertices in G is its extreme order ex(G). A graph G is said to be an extreme outer connected geodesic graph if goc(G) = ex(G). It is shown that for every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there exists a connected graph G with ex(G) = a and goc(G) = b. Also, it is shown that for positive integers r, d and k ≥ 2 with r < d ≤ 2r, there exists an extreme outer connected geodesic graph G of radius r, diameter d and outer connected geodetic number k
The Upper and Forcing Connected Outer Connected Geodetic Numbers of a Graph
For a connected graph [Formula: see text] of order at least two, a connected outer connected geodetic set [Formula: see text] of [Formula: see text] is called a minimal connected outer connected geodetic set if no proper subset of [Formula: see text] is a connected outer connected geodetic set of [Formula: see text]. The upper connected outer connected geodetic number [Formula: see text] of [Formula: see text] is the maximum cardinality of a minimal connected outer connected geodetic set of [Formula: see text]. We determine bounds for it and certain general properties satisfied by this parameter are studied. It is shown that, for any two integers [Formula: see text], [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], where [Formula: see text] is the connected outer connected geodetic number of a graph. Also, another parameter forcing connected outer connected geodetic number [Formula: see text] of a graph [Formula: see text] is introduced and several interesting results on this parameter are studied. </jats:p
- …
