26 research outputs found
Age-Dependent Involvement of Gut Mast Cells and Histamine in Post-Stroke Inflammation
BACKGROUND: Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine.
METHODS: Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma.
RESULTS: We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke.
CONCLUSION: An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome
Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis
Quantification of Compartmented Metabolic Fluxes in Developing Soybean Embryos by Employing Biosynthetically Directed Fractional (13)C Labeling, Two-Dimensional [(13)C, (1)H] Nuclear Magnetic Resonance, and Comprehensive Isotopomer Balancing
Metabolic flux quantification in plants is instrumental in the detailed understanding of metabolism but is difficult to perform on a systemic level. Toward this aim, we report the development and application of a computer-aided metabolic flux analysis tool that enables the concurrent evaluation of fluxes in several primary metabolic pathways. Labeling experiments were performed by feeding a mixture of U-(13)C Suc, naturally abundant Suc, and Gln to developing soybean (Glycine max) embryos. Two-dimensional [(13)C, (1)H] NMR spectra of seed storage protein and starch hydrolysates were acquired and yielded a labeling data set consisting of 155 (13)C isotopomer abundances. We developed a computer program to automatically calculate fluxes from this data. This program accepts a user-defined metabolic network model and incorporates recent mathematical advances toward accurate and efficient flux evaluation. Fluxes were calculated and statistical analysis was performed to obtain sds. A high flux was found through the oxidative pentose phosphate pathway (19.99 ± 4.39 μmol d(−1) cotyledon(−1), or 104.2 carbon mol ± 23.0 carbon mol per 100 carbon mol of Suc uptake). Separate transketolase and transaldolase fluxes could be distinguished in the plastid and the cytosol, and those in the plastid were found to be at least 6-fold higher. The backflux from triose to hexose phosphate was also found to be substantial in the plastid (21.72 ± 5.00 μmol d(−1) cotyledon(−1), or 113.2 carbon mol ±26.0 carbon mol per 100 carbon mol of Suc uptake). Forward and backward directions of anaplerotic fluxes could be distinguished. The glyoxylate shunt flux was found to be negligible. Such a generic flux analysis tool can serve as a quantitative tool for metabolic studies and phenotype comparisons and can be extended to other plant systems
Leveraging stored energy for handling power emergencies in aggressively provisioned datacenters
Proteomics of Nitrogen Remobilization in Poplar Bark
Seasonal
nitrogen (N) cycling in temperate deciduous trees involves
the accumulation of bark storage proteins (BSPs) in phloem parenchyma
and xylem ray cells. BSPs are anabolized using recycled N during autumn
leaf senescence and later become a source of N during spring shoot
growth as they are catabolized. Little is known about the catabolic
processes involved in remobilization and reutilization of N from BSPs
in trees. In this study, we used multidimensional protein identification
technology (MudPIT) and spectral counting to identify protein changes
that occur in the bark during BSP catabolism. A total of 4,178 proteins
were identified from bark prior to and during BSP catabolism. The
majority (62%) of the proteins were found during BSP catabolism, indicating
extensive remodeling of the proteome during renewed shoot growth and
N remobilization. Among these proteins were 30 proteases, the relative
abundances of which increased during BSP catabolism. These proteases
spanned a range of families including members of the papain-like cysteine
proteases, serine carboxypeptidases, and aspartyl proteases. These
data identify, for the first time, candidate proteases that could
potentially provide hydrolase activity required for N remobilization
from BSPs and provide the foundation for research to advance our knowledge
of poplar N cycling
Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation
Abstract
Background
Risk of stroke-related morbidity and mortality increases significantly with age. Aging is associated with chronic, low-grade inflammation, which is thought to contribute to the poorer outcomes after stroke seen in the elderly. Histamine (HA) is a major molecular mediator of inflammation, and mast cells residing in the gut are a primary source of histamine.
Methods
Stroke was induced in male C57BL/6 J mice at 3 months (young) and 20 months (aged) of age. Role of histamine after stroke was examined using young (Yg) and aged (Ag) mice; mice underwent MCAO surgery and were euthanized at 6 h, 24 h, and 7 days post-ischemia; sham mice received the same surgery but no MCAO. In this work, we evaluated whether worsened outcomes after experimental stroke in aged mice were associated with age-related changes in mast cells, histamine levels, and histamine receptor expression in the gut, brain, and plasma.
Results
We found increased numbers of mast cells in the gut and the brain with aging. Using the middle cerebral artery occlusion (MCAO) model of ischemic stroke, we demonstrate that stroke leads to increased numbers of gut mast cells and gut histamine receptor expression levels. These gut-centric changes are associated with elevated levels of HA and other pro-inflammatory cytokines including IL-6, G-CSF, TNF-α, and IFN-γ in the peripheral circulation. Our data also shows that post-stroke gut inflammation led to a significant reduction of mucin-producing goblet cells and a loss of gut barrier integrity. Lastly, gut inflammation after stroke is associated with changes in the composition of the gut microbiota as early as 24-h post-stroke.
Conclusion
An important theme emerging from our results is that acute inflammatory events following ischemic insults in the brain persist longer in the aged mice when compared to younger animals. Taken together, our findings implicate mast cell activation and histamine signaling as a part of peripheral inflammatory response after ischemic stroke, which are profound in aged animals. Interfering with histamine signaling orally might provide translational value to improve stroke outcome.
</jats:sec
