28,331 research outputs found

    Non-analyticities in three-dimensional gauge theories

    Full text link
    Quantum fluctuations generate in three-dimensional gauge theories not only radiative corrections to the Chern-Simons coupling but also non-analytic terms in the effective action. We review the role of those terms in gauge theories with massless fermions and Chern-Simons theories. The explicit form of non-analytic terms turns out to be dependent on the regularization scheme and in consequence the very existence of phenomena like parity and framing anomalies becomes regularization dependent. In particular we find regularization regimes where both anomalies are absent. Due to the presence of non-analytic terms the effective action becomes not only discontinuous but also singular for some background gauge fields which include sphalerons. The appearence of this type of singularities is linked to the existence of nodal configurations in physical states and tunneling suppression at some classical field configurations. In the topological field theory the number of physical states may also become regularization dependent. Another consequence of the peculiar behaviour of three-dimensional theories under parity odd regularizations is the existence of a simple mechanism of generation of a mass gap in pure Yang-Mills theory by a suitable choice of regularization scheme. The generic value of this mass does agree with the values obtained in Hamiltonian and numerical analysis. Finally, the existence of different regularization regimes unveils the difficulties of establishing a Zamolodchikov c-theorem for three-dimensional field theories in terms of the induced gravitational Chern-Simons couplings.Comment: 21 pages; Contribution to Ian Kogan Memorial Collection, ``From Fields to Strings: Circumnavigating Theoretical Physics'

    Evaluation of 2.1µm DFB lasers for space applications

    Full text link
    This paper presents the results obtained in the frame of an ESA-funded project called “Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application” with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1µm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current

    Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures

    Get PDF
    The tuned mass-damper-inerter (TMDI) is a recently proposed passive vibration suppression device that couples the classical tuned mass-damper (TMD), comprising a secondary mass attached to the structure via a spring and dashpot, with an inerter. The latter is a two-terminal mechanical device developing a resisting force proportional to the relative acceleration of its terminals by the “inertance” constant. In a number of previous studies, optimally tuned TMDIs have been shown to outperform TMDs in mitigating earthquake-induced vibrations in building structures for the same pre-specified secondary mass. TMDI design in these studies involved simplified modeling assumptions, such as adopting a single performance objective and/or modeling seismic excitation as stationary stochastic process. This paper extends these efforts by examining a risk-informed TMDI optimization, adopting multiple objectives and using response history analysis and probabilistic life-cycle criteria to quantify performance. The first performance criterion, representing overall direct benefits, is the life-cycle cost of the system, composed of the upfront TMDI cost and the anticipated seismic losses over the lifetime of the structure. The second performance criterion, introducing risk-aversion attitudes into the design process, is the repair cost with a specific return period (i.e., probability of exceedance over the lifetime of the structure). The third performance criterion, accounting for practical constraints associated with the size of the inerter and its connection to the structure, is the inerter force with a specific return period. A particular variant of the design problem is also examined by combining the first and third performance criteria/objectives. A case study involving a 21-storey building constructed in Santiago, Chile shows that optimal TMDI configurations can accomplish simultaneous reduction of life-cycle and repair costs. However, these cost reductions come at the expense of increased inerter forces. It is further shown that connecting the inerter to lower floors provides considerable benefits across all examined performance criteria as the inerter is engaged in a more efficient way for the same inerter coefficient and attached mass ratios

    Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers

    Get PDF
    Quantum nanomagnets can show a field dependence of the relaxation time very different from their classical counterparts, due to resonant tunneling via excited states (near the anisotropy barrier top). The relaxation time then shows minima at the resonant fields H_{n}=n D at which the levels at both sides of the barrier become degenerate (D is the anisotropy constant). We showed that in Mn12, near zero field, this yields a contribution to the nonlinear susceptibility that makes it qualitatively different from the classical curves [Phys. Rev. B 72, 224433 (2005)]. Here we extend the experimental study to finite dc fields showing how the bias can trigger the system to display those quantum nonlinear responses, near the resonant fields, while recovering an classical-like behaviour for fields between them. The analysis of the experiments is done with heuristic expressions derived from simple balance equations and calculations with a Pauli-type quantum master equation.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, brief report

    POISSON project - III - Investigating the evolution of the mass accretion rate

    Full text link
    As part of the POISSON project (Protostellar Optical-Infrared Spectral Survey on NTT), we present the results of the analysis of low-resolution NIR spectra 0.9-2.4 um) of two samples of YSOs in Lupus and Serpens (52 and 17 objects), with masses 0.1-2.0 Msun and ages from 10^5 to a few 10^7 yr. After determining the accretion parameters of the Lup and Ser targets by analysing their HI near-IR emission features, we added the results to those from previous regions (investigated in POISSON with the same methodology). We obtained a final catalogue (143 objects) of mass accretion rates (Macc) derived in a homogeneous fashion and analysed how Macc correlates with M* and how it evolves in time. We derived the accretion luminosity (Lacc) and Macc for Lup and Ser objects from the Br_gamma line by using relevant empirical relationships from the literature that connect HI line luminosity and Lacc. To minimise the biases and also for self-consistency, we re-derived mass and age for each source using the same set of evolutionary tracks. We observe a correlation MaccM*^2.2, similarly to what has previously been observed in several star-forming clouds. The time variation of Macc is roughly consistent with the expected evolution in viscous disks, with an asymptotic decay that behaves as t^-1.6. However, Macc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Although part of the scattering may be related to the employed empirical relationship and to uncertainties on the single measurements, the general distribution and decay trend of the Macc points are real. These findings might be indicative of a large variation in the initial mass of the disks, of fairly different viscous laws among disks, of varying accretion regimes, and of other mechanisms that add to the dissipation of the disks, such as photo-evaporation.Comment: 18 pages, 10 figures, accepted by A&

    Exploring the dimming event of RW Aur A through multi-epoch VLT/X-Shooter spectroscopy

    Full text link
    RW Aur A is a CTTS that has suddenly undergone three major dimming events since 2010. We aim to understand the dimming properties, examine accretion variability, and derive the physical properties of the inner disc traced by the CO ro-vibrational emission at NIR wavelengths (2.3 mic). We compared two epochs of X-Shooter observations, during and after the dimming. We modelled the rarely detected CO bandhead emission in both epochs to examine whether the inner disc properties had changed. The SED was used to derive the extinction properties of the dimmed spectrum and compare the infrared excess between the two epochs. Lines tracing accretion were used to derive the mass accretion rate in both states. The CO originates from a region with physical properties of T=3000 K, NCO_{CO}=1x1021^{21} cm2^{-2} and vsini=113 km/s. The extinction properties of the dimming layer were derived with the effective optical depth ranging from teff 2.5-1.5 from the UV to the NIR. The inferred mass accretion rate Macc is 1.5x1081.5x 10^{-8} Msun/yr and 2x108\sim 2x 10^{-8} Msun/yr after and during the dimming respectively. By fitting the SED, additional emission is observed in the IR during the dimming event from dust grains with temperatures of 500-700K. The physical conditions traced by the CO are similar for both epochs, indicating that the inner gaseous disc properties do not change during the dimming events. The extinction curve is flatter than that of the ISM, and large grains of a few hundred microns are thus required. When we correct for the observed extinction, Macc is constant in the two epochs, suggesting that the accretion is stable and therefore does not cause the dimming. The additional hot emission in the NIR is located at about 0.5 au from the star. The dimming events could be due to a dust-laden wind, a severe puffing-up of the inner rim, or a perturbation caused by the recent star-disc encounter.Comment: Accepted by Astronomy & Astrophysic
    corecore