8,746 research outputs found
The massive multiple system HD 64315
The O6 Vn star HD 64315 is believed to belong to the star-forming region
known as NGC 2467, but previous distance estimates do not support this
association. We explore the multiple nature of this star with the aim of
determining its distance, and understanding its connection to NGC 2467. A total
of 52 high-resolution spectra have been gathered over a decade. We use their
analysis, in combination with the photometric data from All Sky Automated
Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at
least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315
contains two binary systems, one of which is an eclipsing binary. The two
binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance
to the system, around 5 kpc, is considered. The presence of fainter companions
is not excluded by current observations. The non-eclipsing binary (HD 64315
AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than
those of the eclipsing binary, and dominate the appearance of the system. The
eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008
d. We derive masses of 14.6+-2.3 M for both components of the BaBb
system. They are almost identical; both stars are overfilling their respective
Roche lobes, and share a common envelope in an overcontact configuration. The
non-eclipsing binary is a detached system composed of two stars with spectral
types around O6 V with minimum masses of 10.8 M and 10.2 M, and
likely masses aprox. 30 M. HD 64315 provides a cautionary tale about
high-mass star isolation and multiplicity. Its total mass is likely above 90
M,but it seems to have formed without an accompanying cluster. It
contains one the most massive overcontact binaries known, a likely merger
progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table
Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics
We, first, analytically work out the long-term, i.e. averaged over one
orbital revolution, perturbations on the orbit of a test particle moving in a
local Fermi frame induced therein by the cosmological tidal effects of the
inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently
attracted attention, among other things, as a possible explanation of the
observed cosmic acceleration without resorting to dark energy. Then, we
phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 =
-\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of
solar system data. The corrections to the standard
Newtonian/Einsteinian precessions of the perihelia of the inner planets
recently estimated with the EPM ephemerides, compared to our predictions for
them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of
the Cassini-based Earth-Saturn range, compared with the numerically integrated
LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced
distortions of the orbit of a typical object of the Oort cloud with respect to
the commonly accepted Newtonian picture, based on the observations of the comet
showers from that remote region of the solar system, point towards K_1/2 <=
10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from
cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference
added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP
Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis
In this work, we present a comparison of a shallow and a deep learning
architecture for the automated segmentation of white matter lesions in MR
images of multiple sclerosis patients. In particular, we train and test both
methods on early stage disease patients, to verify their performance in
challenging conditions, more similar to a clinical setting than what is
typically provided in multiple sclerosis segmentation challenges. Furthermore,
we evaluate a prototype naive combination of the two methods, which refines the
final segmentation. All methods were trained on 32 patients, and the evaluation
was performed on a pure test set of 73 cases. Results show low lesion-wise
false positives (30%) for the deep learning architecture, whereas the shallow
architecture yields the best Dice coefficient (63%) and volume difference
(19%). Combining both shallow and deep architectures further improves the
lesion-wise metrics (69% and 26% lesion-wise true and false positive rate,
respectively).Comment: Accepted to the MICCAI 2018 Brain Lesion (BrainLes) worksho
Matching microscopic and macroscopic responses in glasses
We first reproduce on the Janus and Janus II computers a milestone experiment
that measures the spin-glass coherence length through the lowering of
free-energy barriers induced by the Zeeman effect. Secondly we determine the
scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett.
118, 157203 (2017)]. The value of the coherence length estimated through the
analysis of microscopic correlation functions turns out to be quantitatively
consistent with its measurement through macroscopic response functions.
Further, non-linear susceptibilities, recently measured in glass-forming
liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
Critical Behavior of Three-Dimensional Disordered Potts Models with Many States
We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical
simulations (that severely slow down for increasing p) detect a very clear spin
glass phase transition. We evaluate the critical exponents and the critical
value of the temperature, and we use known results at lower values to
discuss how they evolve for increasing p. We do not find any sign of the
presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat.
Mec
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
Spectrophotometric investigations of Blue Compact Dwarf Galaxies: Markarian 35
We present results from a detailed spectrophotometric analysis of the blue
compact dwarf galaxy Mrk 35 (Haro 3), based on deep optical (B,V,R,I) and
near-IR (J,H,K) imaging, Halpha narrow-band observations and long-slit
spectroscopy. The optical emission of the galaxy is dominated by a central
young starburst, with a bar-like shape, while an underlying component of stars,
with elliptical isophotes and red colors, extends more than 4 kpc from the
galaxy center. High resolution Halpha and color maps allow us to identify the
star-forming regions, to spatially discriminate them from the older stars, and
to recognize several dust patches. We derive colors and Halpha parameters for
all the identified star-forming knots. Observables derived for each knot are
corrected for the contribution of the underlying older stellar population, the
contribution by emission lines, and from interstellar extinction, and compared
with evolutionary synthesis models. We find that the contributions of these
three factors are by no means negligible and that they significantly vary
across the galaxy. Therefore, careful quantification and subtraction of
emission lines, galaxy host contribution, and interstellar reddening at every
galaxy position, are essential to derive the properties of the young stars in
BCDs. We find that we can reproduce the colors of all the knots with an
instantaneous burst of star formation and the Salpeter initial mass function
with an upper mass limit of 100 M_solar. In all cases the knots are just a few
Myr old. The underlying population of stars has colors consistent with being
several Gyr old.Comment: 21 pages, 13 figures. Accepted for publication in ApJ, tentatively
scheduled for the ApJ November 1, 2007 v669n1 issu
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
Ionized gas kinematics of galaxies in the CALIFA survey I: Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems
This work provides an overall characterization of the kinematic behavior of
the ionized gas of the galaxies included in the Calar Alto Legacy Integral
field Area (CALIFA), offering kinematic clues to potential users of this survey
for including kinematical criteria for specific studies. From the first 200
galaxies observed by CALIFA, we present the 2D kinematic view of the 177
galaxies satisfying a gas detection threshold. After removing the stellar
contribution, we used the cross-correlation technique to obtain the radial
velocity of the dominant gaseous component. The main kinematic parameters were
directly derived from the radial velocities with no assumptions on the internal
motions. Evidence of the presence of several gaseous components with different
kinematics were detected by using [OIII] profiles. Most objects in the sample
show regular velocity fields, although the ionized-gas kinematics are rarely
consistent with simple coplanar circular motions. 35% of the objects present
evidence of a displacement between the photometric and kinematic centers larger
than the original spaxel radii. Only 17% of the objects in the sample exhibit
kinematic lopsidedness when comparing receding and approaching sides of the
velocity fields, but most of them are interacting galaxies exhibiting nuclear
activity. Early-type galaxies in the sample present clear photometric-kinematic
misaligments. There is evidence of asymmetries in the emission line profiles
suggesting the presence of kinematically distinct gaseous components at
different distances from the nucleus. This work constitutes the first
determination of the ionized gas kinematics of the galaxies observed in the
CALIFA survey. The derived velocity fields, the reported kinematic
peculiarities and the identification of the presence of several gaseous
components might be used as additional criteria for selecting galaxies for
specific studies.Comment: 38 pages, 16 figures, 4 tables. Paper accepted for publication in A&
- …
