368 research outputs found
Chromaticity in all-reflective telescopes for astrometry
Chromatic effects are usually associated with refractive optics, so
reflective telescopes are assumed to be free from them. We show that
all-reflective optics still bears significant levels of such perturbations,
which is especially critical to modern micro-arcsecond astrometric experiments.
We analyze the image formation and measurement process to derive a precise
definition of the chromatic variation of the image position, and we evaluate
the key aspects of optical design with respect to chromaticity. The fundamental
requirement related to chromaticity is the symmetry of the optical design and
of the wavefront errors. Finally, we address some optical engineering issues,
such as manufacturing and alignment, providing recommendations to minimize the
degradation that chromaticity introduces into astrometry.Comment: 10 pages, 8 figure
Plasma Electronics
Contains reports on seventeen research projects.National Science Foundation (Grant GK-57)United States Atomic Energy Commission (Contract AT(30-1)-3285)United States Atomic Energy Commission under Contract AT(30-1)-322
Expected performance of the ASTRI-SST-2M telescope prototype
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is an
Italian flagship project pursued by INAF (Istituto Nazionale di Astrofisica)
strictly linked to the development of the Cherenkov Telescope Array, CTA.
Primary goal of the ASTRI program is the design and production of an end-to-end
prototype of a Small Size Telescope for the CTA sub-array devoted to the
highest gamma-ray energy region. The prototype, named ASTRI SST-2M, will be
tested on field in Italy during 2014. This telescope will be the first
Cherenkov telescope adopting the double reflection layout in a
Schwarzschild-Couder configuration with a tessellated primary mirror and a
monolithic secondary mirror. The collected light will be focused on a compact
and light-weight camera based on silicon photo-multipliers covering a 9.6 deg
full field of view. Detailed Monte Carlo simulations have been performed to
estimate the performance of the planned telescope. The results regarding its
energy threshold, sensitivity and angular resolution are shown and discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
SOXS: a wide band spectrograph to follow up transients
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope
capable to cover the optical and NIR bands, based on the heritage of the
X-Shooter at the ESO-VLT. SOXS will be built and run by an international
consortium, carrying out rapid and longer term Target of Opportunity requests
on a variety of astronomical objects. SOXS will observe all kind of transient
and variable sources from different surveys. These will be a mixture of fast
alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term
alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by
passage of minor bodies). While the focus is on transients and variables, still
there is a wide range of other astrophysical targets and science topics that
will benefit from SOXS. The design foresees a spectrograph with a
Resolution-Slit product ~ 4500, capable of simultaneously observing over the
entire band the complete spectral range from the U- to the H-band. The limiting
magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified
from on-going imaging surveys. Light imaging capabilities in the optical band
(grizy) are also envisaged to allow for multi-band photometry of the faintest
transients. This paper outlines the status of the project, now in Final Design
Phase.Comment: 12 pages, 14 figures, to be published in SPIE Proceedings 1070
- …
