5,057 research outputs found
Research in interactive scene analysis
An interactive scene interpretation system (ISIS) was developed as a tool for constructing and experimenting with man-machine and automatic scene analysis methods tailored for particular image domains. A recently developed region analysis subsystem based on the paradigm of Brice and Fennema is described. Using this subsystem a series of experiments was conducted to determine good criteria for initially partitioning a scene into atomic regions and for merging these regions into a final partition of the scene along object boundaries. Semantic (problem-dependent) knowledge is essential for complete, correct partitions of complex real-world scenes. An interactive approach to semantic scene segmentation was developed and demonstrated on both landscape and indoor scenes. This approach provides a reasonable methodology for segmenting scenes that cannot be processed completely automatically, and is a promising basis for a future automatic system. A program is described that can automatically generate strategies for finding specific objects in a scene based on manually designated pictorial examples
Modal Control of Vibration in Rotating Machines and Other Generally Damped Systems
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving non-classical damping is proposed. An example of modal control successfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components
Parity-Violating Electron Scattering and Neucleon Structure
The measurement of parity violation in the helicity dependence of
electron-nucleon scattering provides unique information about the basic quark
structure of the nucleons. In this review, the general formalism of
parity-violating electron scattering is presented, with emphasis on elastic
electron-nucleon scattering. The physics issues addressed by such experiments
is discussed, and the major goals of the presently envisioned experimental
program are identified. %General aspects of the experimental technique are
reviewed and A summary of results from a recent series of experiments is
presented and the future prospects of this program are also discussed.Comment: 45 pages, 9 figure
A polarised QCD condensate: nu p elastic scattering as a probe of U_A(1) dynamics
U_A(1) dynamics have the potential to induce a polarised condensate inside a
nucleon. The formation of this condensate is related to the realisation of
U_A(1) symmetry breaking by tunneling processes such as instantons. If it is
present, the polarised condensate induces a term in g_1 which has support only
at x=0. Tunneling processes then induce a net transfer of ``spin'' from finite
x to x=0. The polarised condensate may be measured by comparing the
flavour-singlet axial charges which are extracted from polarised deep inelastic
and nu p elastic scattering experiments.Comment: 13 pages LaTeX, Section 3 improved to include discussion of the 3
flavour quark instanton interaction; to appear in Mod. Phys. Lett.
The inverse hexagonal - inverse ribbon - lamellar gel phase transition sequence in low hydration DOPC:DOPE phospholipid mixtures
The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50° C. At low temperatures the inverse ribbon phase is observed to have a transition to a gel lamellar phase, with no intermediate fluid lamellar phase. This phase transition is confirmed by differential scanning calorimetry
The RF power coupler development programme at LAL-Orsay and DESY-Hamburg for TESLA and the European X-FEL
In the context of a collaboration between LAL (Orsay) and DESY (Hamburg) a programme of development and tests of proto-type power couplers for superconducting cavities is underway in Orsay. Such couplers need to be developed for linear accelerators which require high gradient superconducting cavities, such as the European X-ray Free Electron Laser or the International Linear Collider (ILC) project. We will describe the technical demands which have to be met to build such couplers and will present pro-type designs which are intended to meet these demands, taking the ILC as an example. A description of the infra-structure necessary for the coupler development will also be given along with first high power tests results on a series of power couplers built in industry
Gas-to-gas heat exchanger design for high performance thermal energy storage
The mathematical modelling and optimization of a gas-to-gas heat exchanger with a non-constant cross sectional area is presented. The design of the cross sectional area of the heat exchanger analyzed is based on an hexagonal mesh, which would be highly impractical to fabricate in a conventional way but could be built relatively easily through modern manufacturing techniques. The geometric configuration proposed allows attaining a high exergy efficiency and a significant cost reduction, measured in terms of volume per unit of exergy transfer. The relationship that exists between the overall exergy efficiency of the heat exchanger and its cost is thoroughly explained throughout the study.
The results obtained from the modelling demonstrate the premise that it is possible to realize designs for heat exchangers that are highly exergy-efficient and very cheap, owing to the small volume of material required, if the constrains imposed by the limitations of traditional manufacturing methods are set aside. Furthermore, the study reveals a very important fact: the volume of material in a heat exchanger increases in quadratic proportion to its characteristic dimension, which implies that scaling up the geometry has a strong impact on its cost-effectiveness
Modal Control of Vibration in Rotating Machines and Other Generally Damped Systems
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving non-classical damping is proposed. An example of modal control successfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components
- …
