296 research outputs found

    Hurricane Katrina and Our Nation’s Black Colleges

    Get PDF

    Historically Black Colleges and Universities: Recent Trends (2007)

    Get PDF
    The nation’s historically black colleges and universities (HBCUs) are diverse. Although we discuss them as a category based on their historical racial makeup, these institutions are in fact quite different from one another. According to the government’s definition, black colleges are bound together by the fact that they were established prior to 1964 (the year of the Civil Rights Act) with the express purpose of educating African Americans. These institutions, of which there are 103, are public, private, large, small, religious, nonsectarian, selective, and open-enrolling. They educate 300,000 students and employ over 14,000 faculty members.1 Some black colleges are thriving, others are barely making ends meet, and many fall in between. Regardless, most of them are providing a much needed education to African American students (and many others)

    The Path to Graduate School in Science and Engineering for Underrepresented Students of Color

    Get PDF
    Over the past decade, the numnber of Black, Hispanic, and American Indian/Alaska Native students attaining bachelor\u27s degrees in science and engineering fields has increased substantially. In 2004, 13.9% of all bachelor\u27s degrees in science and engineering fields were awarded to students from these three groups, up from 11.2% in 1995 (Hill & Green, 2007). Although Blacks, Hispanics, and American Indians continue to be underrepresented among bachelor\u27s degree recipients in science and engineering fields relative to their representation among all bachelor\u27s degree recipients (13.9% versus 16.9% in 2004, Hill & Green, 2007), these trends suggest that progress is being made

    The MIRI/MRS Library I. Empirically correcting detector charge migration in unresolved sources

    Full text link
    The JWST has been collecting scientific data for over two years now. Scientists are now looking deeper into the data, which introduces the need to correct known systematic effects. Important limiting factors for the MIRI/MRS are the pointing accuracy, non-linearity, detector charge migration, detector scattering, the accuracy of the PSF model, and the complex interplay between these. The Cycle 2 programme 3779 proposed a 72-point intra-pixel dither raster of the calibration star 10-Lac. In this first work of the paper series, we aim to address the degeneracy between the non-linearity and BFE that affect the pixel voltage integration ramps of the MRS. Due to the low flux in the longer wavelengths, we only do this in the 4.9 to 11.7 micron region. We fitted the ramps per pixel and dither, in order to fold in the deviations from classical non-linearity that are caused by charge migration. The ramp shapes should be repeatable depending on the part of the PSF that is sampled. By doing so, we defined both a grid-based linearity correction, and an interpolated linearity correction. We find significant improvements compared to the uniform illumination assumption. The standard deviation on the pixel ramp residual non-linearity is between 70-90% smaller than the current standard pipeline when self-calibrating with the grid. We are able to interpolate these coefficients to apply to any unresolved source not on the grid points, resulting in an up to 70% smaller standard deviation on the residual deviation from linearity. The FWHM is up to 20% narrower. The depth of the fringes is now consistent up the ramp. Pointing-specific linearity corrections allow us to fix the systematic deviation in the slopes. We demonstrated this for unresolved sources. The discovered trends with PSF sampling suggest that, we may be able to model ramps for spatially extended and resolved illumination as well.Comment: 18 pages, 20 figures, Accepted for publication in A&

    Nuclear high-ionisation outflow in the Compton-thick AGN NGC6552 as seen by the JWST mid-infrared instrument

    Get PDF
    During the commissioning of the James Webb Space Telescope (JWST), the mid-infrared instrument (MIRI) observed NGC6552 with the MIRI Imager and the medium-resolution spectrograph (MRS). NGC6552 is an active galactic nucleus (AGN) at redshift 0.0266 classified as a Seyfert 2 nucleus in the optical, and Compton-thick AGN in X-rays. This work exemplifies and demonstrates the MRS capabilities to study the mid-infrared (mid-IR) spectra and characterize the physical conditions and kinematics of the ionized and molecular gas in the nuclear regions of nearby galaxies. We obtained the nuclear, circumnuclear, and central mid-IR spectra of NGC6552. They provide the first clear observational evidence for a nuclear outflow in NGC6552. The outflow contributes to 67±\pm7% of the total line flux independent of the ionization potential (27 to 187 eV) and critical densities (104^4 to 4×\times106^{6} cm3^{-3}), showing an average blue-shifted peak velocity of -127±\pm45 kms1^{-1} and an outflow maximal velocity of 698±\pm80 kms1^{-1}. Since the mid-IR photons penetrate dusty regions as efficiently as X-ray keV photons, we interpret these results as the evidence for a highly ionized, non-stratified, AGN-powered, and fast outflowing gas in a low density environment (few 103^{3} cm3^{-3}) located very close (<0.2kpc) to the Compton-thick AGN. Nine pure rotational molecular Hydrogen lines are detected and spectrally resolved, and exhibit symmetric Gaussian profiles, consistent with the galactic rotation, and with no evidence of outflowing H2_{2} material. We detect a warm H2_{2} mass of 1.9±1.1×107M1.9\pm1.1\times10^7 M_{\odot} in the central region (1.8 kpc in diameter) of the galaxy, with almost 30% of that mass in the circum-nuclear region. Line ratios confirm that NGC6552 has a Seyfert nucleus with a black hole mass estimated in the range of 0.6 to 6 million solar masses.Comment: 13 pages, 5 figures, 5 tables, accepted in A&

    The diverse chemistry of protoplanetary disks as revealed by JWST

    Get PDF
    Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around low-mass stars and one around a very young high-mass star. The mid-infrared spectra show some similarities but also significant diversity: some sources are rich in CO2, others in H2O or C2H2. In one disk around a very low-mass star, booming C2H2 emission provides evidence for a ``soot'' line at which carbon grains are eroded and sublimated, leading to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene (C6H6) are detected (Tabone et al. 2023). Together, the data point to an active inner disk gas-phase chemistry that is closely linked to the physical structure (temperature, snowlines, presence of cavities and dust traps) of the entire disk and which may result in varying CO2/H2O abundances and high C/O ratios >1 in some cases. Ultimately, this diversity in disk chemistry will also be reflected in the diversity of the chemical composition of exoplanets.Comment: 17 pages, 8 figures. Author's version of paper submitted to Faraday Discussions January 18 2023, Accepted March 16 202

    Observations of the planetary nebula SMP LMC 058 with the JWST MIRI medium resolution spectrometer

    Get PDF
    During the commissioning of JWST, the medium-resolution spectrometer (MRS) on the mid-infrared instrument (MIRI) observed the planetary nebula SMP LMC 058 in the Large Magellanic Cloud. The MRS was designed to provide medium resolution (R = λ/Δλ) 3D spectroscopy in the whole MIRI range. SMP LMC 058 is the only source observed in JWST commissioning that is both spatially and spectrally unresolved by the MRS and is a good test of JWST's capabilities. The new MRS spectra reveal a wealth of emission lines not previously detected in this planetary nebula. From these lines, the spectral resolving power (λ/Δλ) of the MRS is confirmed to be in the range R = 4000-1500, depending on the MRS spectral sub-band. In addition, the spectra confirm that the carbon-rich dust emission is from complex hydrocarbons and SiC grains and that there is little to no time evolution of the SiC dust and emission line strengths over a 17-yr epoch. These commissioning data reveal the great potential of the MIRI MRS for the study of circumstellar and interstellar material.</p
    corecore