1,168 research outputs found
A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods
We introduce a polynomial spectral calculus that follows from the summation
by parts property of the Legendre-Gauss-Lobatto quadrature. We use the calculus
to simplify the analysis of two multidimensional discontinuous Galerkin
spectral element approximations
Freshwater Ecosystems: From Models to Applications
Freshwater ecosystems—lakes and streams—are being endangered by agricultural, urban, and industrial pollution; hydraulic engineering; and overexploitation, which threaten their capacity to provide important services (recreation and supply of food and clean water, among others). Ecological modeling may be employed to estimate impacts and analyze mitigation strategies. Toy models are easy to construct, but applying them to real-world problems is often challenging. Here, we show in two case studies how the connection from model to application can be made. The first study analyzes whether and how the impact of climatic change on a mostly recreational fishery in an Alpine lake can be mitigated, while the second looks at restoring biodiversity after cleaning up pollution in a Korean river system, using aquatic insects, which play an essential functional role in aquatic food-webs and are very sensitive to water quality, as indicators of ecosystem health. These studies highlight the ability of process-based eco-evolutionary models to generate testable hypotheses and contribute solutions to real-world problems
High energy Coulomb-scattered electrons for relativistic particle beam diagnostics
A new system used for monitoring energetic Coulomb-scattered electrons as the
main diagnostic for accurately aligning the electron and ion beams in the new
Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail.
The theory of electron scattering from relativistic ions is developed and
applied to the design and implementation of the system used to achieve and
maintain the alignment. Commissioning with gold and 3He beams is then described
as well as the successful utilization of the new system during the 2015 RHIC
polarized proton run. Systematic errors of the new method are then estimated.
Finally, some possible future applications of Coulomb-scattered electrons for
beam diagnostics are briefly discussed.Comment: 16 pages, 23 figure
Decision making and risk management in adventure sports coaching
Adventure sport coaches practice in environments that are dynamic and high in risk, both perceived and actual. The inherent risks associated with these activities, individuals’ responses and the optimal exploitation of both combine to make the processes of risk management more complex and hazardous than the traditional sports where risk management is focused almost exclusively on minimization. Pivotal to this process is the adventure sports coaches’ ability to make effective judgments regarding levels of risk, potential benefits and possible consequences. The exact nature of this decision making process should form the basis of coaching practice and coach education in this complex and dynamic field. This positional paper examines decision making by the adventure sports coach in these complex, challenging environments and seeks to stimulate debate whilst offering a basis for future research into this topic
Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans
Decellularization of pancreata and repopulation of these non-immunogenic
matrices with islets and endothelial cells could provide transplantable,
endocrine Neo- Pancreata. In this study, rat pancreata were perfusion
decellularized and repopulated with intact islets, comparing three perfusion
routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively
removed all cellular components but conserved the pancreas specific
extracellular matrix. Digital subtraction angiography of the matrices showed a
conserved integrity of the decellularized vascular system but a contrast
emersion into the parenchyma via the decellularized pancreatic duct. Islets
infused via the pancreatic duct leaked from the ductular system into the peri-
ductular decellularized space despite their magnitude. TUNEL staining and
Glucose stimulated insulin secretion revealed that islets were viable and
functional after the process. We present the first available protocol for
perfusion decellularization of rat pancreata via three different perfusion
routes. Furthermore, we provide first proof-of-concept for the repopulation of
the decellularized rat pancreata with functional islets of Langerhans. The
presented technique can serve as a bioengineering platform to generate
implantable and functional endocrine Neo-Pancreata
Polarization transfer in Rayleigh scattering of hard x-rays
Wereport on the first elastic hard x-ray scattering experiment where the linear polarizationcharacteristics of both the incident and the scattered radiation were observed. Rayleigh scattering wasinvestigated in a relativistic regime by using a high-Z target material, namely gold, and a photon energyof 175keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at ascattering angle of q = 90we observed a strong depolarization for the scattered photonswith adegree of linear polarization of +0.27% 0.12%only. This finding agreeswith second-orderquantum electrodynamics calculations of Rayleigh scattering, when taking into account a smallpolarization impurity of the incident photon beam which was determined to be close to 98%. Thelatter value was obtained independently from the elastic scattering by analyzing photons that wereCompton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-arttheory, Rayleigh scattering could provide a very accurate method to diagnose polarization impuritiesin a broad region of hard x-ray energies
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
R&D ERL: Diagnostics
The Energy Recovery Linac (ERL) prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This report outlines requirements on the ERL diagnostics and describes its setup and modes of operation. The BNL Prototype ERL is an R&D effort aimed at reducing risks and costs associated with the proposed RHIC II electron cooler and eRHIC collider. The ERL will serve as a test bed for developing and testing instrumentation and studying physics and technological issues relevant to very high current ERL's. The prototype ERL, mated to a high current SRF gun, is expected to demonstrate production and energy recovery of high intensity, low emittance beams with a current of up to a few hundred milliamps. To successfully accomplish this task the ERL will include beam diagnostics required to characterize and tune beam parameters, as well as for machine protection. A preliminary diagnostics plan was presented in earlier publications. In this report, we describe the diagnostics presently planned to provide the data needed to meet these goals
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
- …
