2,258 research outputs found
"Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite
The present communication reports the first direct measurement of the
conformation of a polymer corona grafted around silica nano-particles dispersed
inside a nanocomposite, a matrix of the same polymer. This measurement
constitutes an experimental breakthrough based on a refined combination of
chemical synthesis, which permits to match the contribution of the neutron
silica signal inside the composite, and the use of complementary scattering
methods SANS and SAXS to extract the grafted polymer layer form factor from the
inter-particles silica structure factor. The modelization of the signal of the
grafted polymer on nanoparticles inside the matrix and the direct comparison
with the form factor of the same particles in solution show a clear-cut change
of the polymer conformation from bulk to the nanocomposite: a transition from a
stretched and swollen form in solution to a Gaussian conformation in the matrix
followed with a compression of a factor two of the grafted corona. In the
probed range, increasing the interactions between the grafted particles (by
increasing the particle volume fraction) or between the grafted and the free
matrix chains (decreasing the grafted-free chain length ratio) does not
influence the amplitude of the grafted brush compression. This is the first
direct observation of the wet-to-dry conformational transition theoretically
expected to minimize the free energy of swelling of grafted chains in
interaction with free matrix chains, illustrating the competition between the
mixing entropy of grafted and free chains, and the elastic deformation of the
grafted chains. In addition to the experimental validation of the theoretical
prediction, this result constitutes a new insight for the nderstanding of the
general problem of dispersion of nanoparticles inside a polymer matrix for the
design of new nanocomposites materials
Characterising University WLANs within Eduroam Context
The eduroam initiative is assuming an ever growing relevance in providing a secure, worldwide roaming access within the university WLAN context. Although several studies have focused on educational WLAN traffic characterisation, the increasing variety of devices, mobility scenarios and user applications, motivate assessing the effective use of eduroam in order to sustain consistent network planning and deployment. Based on recent WLAN traffic traces collected at the University of Minho (Portugal) and University of Vigo (Spain), the present work contributes for identifying and characterising patterns of user behaviour regarding, for instance, the location and activity sector of users. The results of data analysis quantify the impact of network access location on the number of associated users, on the number and duration of sessions and corresponding traffic volumes. The results also illustrate to what extent users take advantage of mobility in the WLAN. Complementing the analysis on a monthly basis, a fine grain study of WLAN traffic is provided through the identification of users' behaviour and patterns in small timescales
Gel transitions in colloidal suspensions
The idealized mode coupling theory (MCT) is applied to colloidal systems
interacting via short-range attractive interactions of Yukawa form. At low
temperatures MCT predicts a slowing down of the local dynamics and ergodicity
breaking transitions. The nonergodicity transitions share many features with
the colloidal gel transition, and are proposed to be the source of gelation in
colloidal systems. Previous calculations of the phase diagram are complemented
with additional data for shorter ranges of the attractive interaction, showing
that the path of the nonergodicity transition line is then unimpeded by the
gas-liquid critical curve at low temperatures. Particular attention is given to
the critical nonergodicity parameters, motivated by recent experimental
measurements. An asymptotic model is developed, valid for dilute systems of
spheres interacting via strong short-range attractions, and is shown to capture
all aspects of the low temperature MCT nonergodicity transitions.Comment: 12 pages, LaTeX, 5 eps figures, uses ioplppt.sty, to appear in J.
Phys.: Condens. Matte
Depression and the incidence of urinary incontinence symptoms among young women: results from a prospective cohort study
Objective To examine the association of depressive symptoms with subsequent urinary incontinence (UI) symptoms among young women. Subjects and methods Data were from a cohort of 5391 young women (born 1973-1978) from the Australian Longitudinal Study on Women's Health. Generalised Estimating Equations (GEEs) were used to link depressive symptoms, and history of doctor diagnosed depression at Survey 2 (S2) in 2000 with the incidence of UI symptoms in subsequent surveys (from S3 in 2003 to S6 in 2012). Results 24% of women reported the incidence of UI over the nine-year study period, while the prevalence rose over time from 6.8% (at S2, aged 22-27 years) to 16.5% (at S6, aged 34-39). From univariable GEE analysis, women with depressive symptoms or a history of depression were more likely to report subsequent UI symptoms. This remained after adjusting for socio-demographic, body mass index, health behaviours and reproductive factors, with depressive symptoms associated with 37% higher odds (odds ratio 1.37, 95% CI 1.16 to 1.61) and history of depression with 42% higher odds (1.42, 1.17 to 1.74) of incidence of UI. Conclusions When woman seek treatment for UI symptoms, health professionals should consider her current or history of depression
Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter
The critical behavior of a model colloid-polymer mixture, the so-called AO
model, is studied using computer simulations and finite size scaling
techniques. Investigated are the interfacial tension, the order parameter, the
susceptibility and the coexistence diameter. Our results clearly show that the
interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26.
This is in good agreement with the 3D Ising exponent. Also calculated are
critical amplitude ratios, which are shown to be compatible with the
corresponding 3D Ising values. We additionally identify a number of subtleties
that are encountered when finite size scaling is applied to the AO model. In
particular, we find that the finite size extrapolation of the interfacial
tension is most consistent when logarithmic size dependences are ignored. This
finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497
(1993)]Comment: 13 pages, 16 figure
High precision measurement of the associated strangeness production in proton proton interactions
A new high precision measurement of the reaction pp -> pK+Lambda at a beam
momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed
analysis of differential observables and their inter-dependencies. Correlations
of the angular distributions with momenta are examined. The invariant mass
distributions are compared for different regions in the Dalitz plots. The cusp
structure at the N Sigma threshold is described with the Flatt\'e formalism and
its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.
Получение керамических мембран на основе оксида алюминия для очистки воды
We performed DNA microarray-based comparative genomic hybridization to identify somatic alterations specific to melanoma genome in 60 human cell lines from metastasized melanoma and from 44 corresponding peripheral blood mononuclear cells. Our data showed gross but nonrandom somatic changes specific to the tumor genome. Although the CDKN2A (78%) and PTEN (70%) loci were the major targets of mono-allelic and bi-allelic deletions, amplifications affected loci with BRAF (53%) and NRAS (12%) as well as EGFR (52%), MITF (40%), NOTCH2 (35%), CCND1 (18%), MDM2 (18%), CCNE1 (10%), and CDK4 (8%). The amplified loci carried additional genes, many of which could potentially play a role in melanoma. Distinct patterns of copy number changes showed that alterations in CDKN2A tended to be more clustered in cell lines with mutations in the BRAF and NRAS genes; the PTEN locus was targeted mainly in conjunction with BRAF mutations. Amplification of CCND1, CDK4, and other loci was signifi cantly increased in cell lines without BRAF-NRAS mutations and so was the loss of chromosome arms 13q and 16q. Our data suggest involvement of distinct genetic pathways that are driven either through oncogenic BRAF and NRAS mutations complemented by aberrations in the CDKN2A and PTEN genes or involve amplification of oncogenic genomic loci and loss of 13q and 16q. It also emerges that each tumor besides being affected by major and most common somatic genetic alterations also acquires additional genetic alterations that could be crucial in determining response to small molecular inhibitors that are being currently pursued
Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers
A simple analytic theory for mixtures of hard spheres and larger polymers
with excluded volume interactions is developed. The mixture is shown to exhibit
extensive immiscibility. For large polymers with strong excluded volume
interactions, the density of monomers at the critical point for demixing
decreases as one over the square root of the length of the polymer, while the
density of spheres tends to a constant. This is very different to the behaviour
of mixtures of hard spheres and ideal polymers, these mixtures although even
less miscible than those with polymers with excluded volume interactions, have
a much higher polymer density at the critical point of demixing. The theory
applies to the complete range of mixtures of spheres with flexible polymers,
from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure
Diffusion and viscosity in a supercooled polydisperse system
We have carried out extensive molecular dynamics simulations of a supercooled
polydisperse Lennard-Jones liquid with large variations in temperature at a
fixed pressure. The particles in the system are considered to be polydisperse
both in size and mass. The temperature dependence of the dynamical properties
such as the viscosity () and the self-diffusion coefficients () of
different size particles is studied. Both viscosity and diffusion coefficients
show super-Arrhenius temperature dependence and fit well to the well-known
Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range
investigated, the value of the Angell's fragility parameter (D )
classifies the present system into a strongly fragile liquid. The critical
temperature for diffusion () increases with the size of the
particles. The critical temperature for viscosity () is larger than
that for the diffusion and a sizeable deviations appear for the smaller size
particles implying a decoupling of translational diffusion from viscosity in
deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is
observed. An inspection of the trajectories of the particles shows that at low
temperatures the motions of both the smallest and largest size particles are
discontinuous (jump-type). However, the crossover from continuous Brownian to
large length hopping motion takes place at shorter time scales for the smaller
size particles.Comment: Revtex4, 7 pages, 8 figure
Structure of Colloid-Polymer Suspensions
We discuss structural correlations in mixtures of free polymer and colloidal
particles based on a microscopic, 2-component liquid state integral equation
theory. Whereas in the case of polymers much smaller than the spherical
particles the relevant polymer degree of freedom is the center of mass, for
polymers larger than the (nano-) particles conformational rearrangements need
to be considered. They have the important consequence that the polymer
depletion layer exhibits two widely different length scales, one of the order
of the particle radius, the other of the order of the polymer radius or the
polymer density screening length in dilute or semidilute concentrations,
respectively. Their consequences on phase stability and structural correlations
are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl
- …
