398 research outputs found
Shell structure and electron-electron interaction in self-assembled InAs quantum dots
Using far-infrared spectroscopy, we investigate the excitations of
self-organized InAs quantum dots as a function of the electron number per dot,
1<n<6, which is monitored in situ by capacitance spectroscopy. Whereas the
well-known two-mode spectrum is observed when the lowest s - states are filled,
we find a rich excitation spectrum for n=3, which reflects the importance of
electron-electron interaction in the present, strongly non-parabolic confining
potential. From capacitance spectroscopy we find that the electronic shell
structure in our dots gives rise to a distinct pattern in the charging energies
which strongly deviates from the monotonic behavior of the Coulomb blockade
found in mesoscopic or metallic structures.Comment: 4 pages, 3 PostScript figure
Zero-field spin splitting in InAs-AlSb quantum wells revisited
We present magnetotransport experiments on high-quality InAs-AlSb quantum
wells that show a perfectly clean single-period Shubnikov-de Haas oscillation
down to very low magnetic fields. In contrast to theoretical expectations based
on an asymmetry induced zero-field spin splitting, no beating effect is
observed. The carrier density has been changed by the persistent photo
conductivity effect as well as via the application of hydrostatic pressure in
order to influence the electric field at the interface of the electron gas.
Still no indication of spin splitting at zero magnetic field was observed in
spite of highly resolved Shubnikov- de Haas oscillations up to filling factors
of 200. This surprising and unexpected result is discussed in view of other
recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.
Nos réflexions sur la politique forestière méditerranéenne : un débat d'avant-garde dans le contexte international.
International audienc
Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population
Mineral nutrient malnutrition, and particularly
deficiency in zinc and iron, afflicts over 3 billion people
worldwide. Wild emmer wheat, Triticum turgidum ssp.
dicoccoides, genepool harbors a rich allelic repertoire for
mineral nutrients in the grain. The genetic and physiological
basis of grain protein, micronutrients (zinc, iron,
copper and manganese) and macronutrients (calcium,
magnesium, potassium, phosphorus and sulfur) concentration
was studied in tetraploid wheat population of 152
recombinant inbred lines (RILs), derived from a cross
between durum wheat (cv. Langdon) and wild emmer
(accession G18-16). Wide genetic variation was found
among the RILs for all grain minerals, with considerable
transgressive effect. A total of 82 QTLs were mapped for
10 minerals with LOD score range of 3.2–16.7. Most QTLs
were in favor of the wild allele (50 QTLs). Fourteen pairs
of QTLs for the same trait were mapped to seemingly
homoeologous positions, reflecting synteny between the A
and B genomes. Significant positive correlation was found
between grain protein concentration (GPC), Zn, Fe and Cu,
which was supported by significant overlap between the
respective QTLs, suggesting common physiological and/or
genetic factors controlling the concentrations of these
mineral nutrients. Few genomic regions (chromosomes 2A,
5A, 6B and 7A) were found to harbor clusters of QTLs for
GPC and other nutrients. These identified QTLs may
facilitate the use of wild alleles for improving grain
nutritional quality of elite wheat cultivars, especially in
terms of protein, Zn and Fe
Is the inflammasome a potential therapeutic target in renal disease?
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases
The design of avalanche protection dams : Recent practical and theoretical developments
This book discusses the design of dams and other protective measures in the run-out zones of wet- and dry-snow avalanches. It summarises recent theoretical developments and the results of field and laboratory studies, combining them with traditional design guidelines and principles to formulate design recommendations. Not discussed are hazard zoning, land use planning, evacuations, supporting structures in starting zones, snow fences in catchment areas, and other safety measures outside the run-out zone. Reinforcement of individual buildings also falls outside the scope of the book, as do protective measures against landslides and slushflows.European Comissio
Prognostic impact of gross tumor volume during radical radiochemotherapy of locally advanced non-small cell lung cancer : results from the NCT03055715 multicenter cohort study of the Young DEGRO Trial Group
Background:
In radical radiochemotherapy (RCT) of inoperable non-small-cell lung cancer (NSCLC) typical prognostic factors include T- and N-stage, while there are still conflicting data on the prognostic relevance of gross tumor volume (GTV) and particularly its changes during RCT. The NCT03055715 study of the Young DEGRO working group of the German Society of Radiation Oncology (DEGRO) evaluated the prognostic impact of GTV and its changes during RCT.
Methods:
A total of 21 university centers for radiation oncology from five different European countries (Germany, Switzerland, Spain, Belgium, and Austria) participated in the study which evaluated n = 347 patients with confirmed (biopsy) inoperable NSCLC in UICC stage III A/B who received radical curative-intent RCT between 2010 and 2013. Patient and disease data were collected anonymously via electronic case report forms and entered into the multi-institutional RadPlanBio platform for central data analysis. GTV before RCT (initial planning CT, GTV1) and at 40–50 Gy (re-planning CT for radiation boost, GTV2) was delineated. Absolute GTV before/during RCT and relative GTV changes were correlated with overall survival as the primary endpoint. Hazard ratios (HR) of survival analysis were estimated by means of adjusted Cox regression models.
Results:
GTV1 was found to have a mean of 154.4 ml (95%CI: 1.5–877) and GTV2 of 106.2 ml (95% CI: 0.5–589.5), resulting in an estimated reduction of 48.2 ml (p 0.05). In patients with available data on both GTV1 and GTV2, absolute GTV1 before RT was not significantly associated with survival (HR 0–69, 0.32–1.49, p > 0.05) but GTV2 significantly predicted OS in a model adjusted for age, T stage, and chemotherapy, with an HR of 3.7 (1.01–13.53, p = 0.04) per 300 ml. The absolute decrease from GTV1 to GTV2 was correlated to survival, where every decrease by 50 ml reduced the HR by 0.8 (CI 0.64–0.99, p = 0.04). There was no evidence for a survival effect of the relative change between GTV1 and GTV2.
Conclusion:
Our results indicate that independently of T stage, the re-planning GTV during RCT is a significant and superior survival predictor compared to baseline GTV before RT. Patients with a high absolute (rather than relative) change in GTV during RT show a superior survival outcome after RCT.Publikationsfonds ML
Evaluation and reduction of magnetic resonance imaging artefacts induced by distinct plates for osseous fixation: an in vitro study @ 3 T
Objectives: To analyze MRI artefacts induced at 3 T by bioresorbable, titanium (TI) and glass fibre reinforced composite (GFRC) plates for osseous reconstruction.Methods: Fixation plates including bioresorbable polymers (Inion CPS, Inion Oy, Tampere, Finland; Rapidsorb, DePuy Synthes, Umkirch, Germany; Resorb X, Gebrueder KLS Martin GmbH, Tuttlingen, Germany), GFRC (Skulle Implants Oy, Turku, Finland) and TI plates of varying thickness and design (DePuy Synthes, Umkirch, Germany) were embedded in agarose gel and a 3 T MRI was performed using a standard protocol for head and neck imaging including T1W and T2W sequences. Additionally, different artefact reduction techniques (slice encoding for metal artefact reduction & ultrashort echo time) were used and their impact on the extent of artefacts evaluated for each material.Results: All TI plates induced significantly more artefacts than resorbable plates in T1W and T2W sequences. GFRCs induced the least artefacts in both sequences. The total extent of artefacts increased with plate thickness and height. Plate thickness had no influence on the percentage of overestimation in all three dimensions. TI-induced artefacts were significantly reduced by both artefact reduction techniques.Conclusions: Polylactide, GFRC and magnesium plates produce less susceptibility artefacts in MRI compared to TI, while the dimensions of TI plates directly influence artefact extension. Slice encoding for metal artefact reduction and ultrashort echo time significantly reduce metal artefacts at the expense of scan time or image resolution
Selective serotonin-reuptake inhibitor and norepinephrine dopamine reuptake inhibitor antidepressants do not affect natural killer cell activity in vitro
- …
