5,868 research outputs found

    Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates

    Full text link
    We describe a variety of intriguing mode-coupling effects which can occur in a confined Bose-Einstein condensed system at finite temperature. These arise from strong interactions between a condensate fluctuation and resonances of the thermal cloud yielding strongly non-linear behaviour. We show how these processes can be affected by altering the aspect ratio of the trap, thereby changing the relevant mode-matching conditions. We illustrate how direct driving of the thermal cloud can lead to significant shifts in the excitation spectrum for a number of modes and provide further experimental scenarios in which the dramatic behaviour observed for the m=0m=0 mode at JILA (Jin {\it et al.} 1997) can be repeated. Our theoretical description is based on a successful second-order finite-temperature quantum field theory which includes the full coupled dynamics of the condensate and thermal cloud and all relevant finite-size effects

    Getting the balance right: qualitative evaluation of a holistic weight management intervention to address childhood obesity

    Get PDF
    Background Childhood obesity is linked to a range of health and social problems. Solutions include the delivery of appropriate weight management interventions for those aged 16 and under. The ‘Balance It! Getting the Balance Right’ programme appears to be effective for those who complete the intervention, but the non-completion rate remains high. A qualitative evaluation was undertaken to explore the views of key stakeholders in the programme and identify possible reasons for non-completion. Methods Semi-structured interviews were conducted with a purposive sample of 16 NHS and local authority staff, and with 20 children (aged 4–16 years) and their families. A mosaic methodology was used, involving visual and verbal techniques employed to enable children of all ages to take an active role in expressing their opinions. Results Key themes included the challenges of approaching overweight children; positive outcomes for some families; and issues relating to communication and coordination. Participants spoke positively about the multi-disciplinary approach of ‘Balance It!’, but felt it could better meet the needs of its target population. Conclusions Structured interventions help to ensure consistency and coherence in terms of approaches to childhood overweight and obesity. Whole family approaches may be most effective in enhancing the user experience

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Get PDF
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively

    Speeding up simulations of relativistic systems using an optimal boosted frame

    Full text link
    It can be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it has been pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. We summarize the findings, the difficulties and their solutions, and show that the technique enables simulations important to several areas of accelerator physics that are otherwise problematic, including self-consistent modeling in three-dimensions of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    Full text link
    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma=1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts

    Bistability in a simple fluid network due to viscosity contrast

    Full text link
    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles

    Risk factors of ischemic stroke and subsequent outcome in hemodialysis patients

    Get PDF
    Background and purpose: End stage renal disease (ESRD) requiring hemodialysis (HD) carries up to a 10-fold greater risk of stroke than normal renal function. Knowledge concerning risk factors and management strategies derived from the general population may not be applicable to those with ESRD. We studied a large ESRD population to identify risk factors and outcomes for stroke. Methods: All adult patients receiving HD for ESRD from 01/01/2007 to 31/12/2012 were extracted from the electronic patient record. Variables associated with stroke were identified by survival analysis; demographic, clinical, imaging and dialysis related variables were assessed and case-fatality determined. Follow-up was until 31/12/2013. Results: 1382 patients were identified (mean age 60.5 years, 58.5% male). The prevalence of AF was 21.2% and 59.4% were incident HD patients. 160 (11.6%) experienced a stroke during 3471 patient-years of follow-up (95% ischemic). Stroke incidence was 41.5/1000 patient-years in prevalent and 50.1/1000 patient-years in incident HD patients. Factors associated with stroke on regression analysis were prior stroke, diabetes and age at starting renal replacement therapy. AF was not significantly associated with stroke and warfarin did not affect stroke risk in warfarin treated patients. Fatality was 18.8% at 7, 26.9% at 28 and 56.3% 365 days after stroke.<p></p> Conclusions: Incidence of stroke is high in patients with ESRD on HD with high case-fatality. Incident HD patients had the highest stroke incidence. Many, but not all, important risk factors commonly associated with stroke in the general population were not associated with stroke in patients receiving HD

    Laminar flow of two miscible fluids in a simple network

    Full text link
    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network non-linearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criteria for their existence is developed. The network results are generic and could be applied to or found in different physical systems
    corecore