196 research outputs found

    Discontinuous symplectic capacities

    Full text link
    We show that the spherical capacity is discontinuous on a smooth family of ellipsoidal shells. Moreover, we prove that the shell capacity is discontinuous on a family of open sets with smooth connected boundaries.Comment: We include generalizations to higher dimensions due to the unknown referee and Janko Latschev. We add examples of open sets with connected boundary on which the shell capacity is not continuous. 3rd and 4th version: minor changes, to appear in J. Fixed Point Theory App

    Eliashberg's proof of Cerf's theorem

    Full text link
    Following a line of reasoning suggested by Eliashberg, we prove Cerf's theorem that any diffeomorphism of the 3-sphere extends over the 4-ball. To this end we develop a moduli-theoretic version of Eliashberg's filling-with-holomorphic-discs method.Comment: 32 page

    Brieskorn manifolds as contact branched covers of spheres

    Full text link
    We show that Brieskorn manifolds with their standard contact structures are contact branched coverings of spheres. This covering maps a contact open book decomposition of the Brieskorn manifold onto a Milnor open book of the sphere.Comment: 8 pages, 1 figur

    Inequivalent contact structures on Boothby-Wang 5-manifolds

    Full text link
    We consider contact structures on simply-connected 5-manifolds which arise as circle bundles over simply-connected symplectic 4-manifolds and show that invariants from contact homology are related to the divisibility of the canonical class of the symplectic structure. As an application we find new examples of inequivalent contact structures in the same equivalence class of almost contact structures with non-zero first Chern class.Comment: 27 pages; to appear in Math. Zeitschrif

    Calabi-Yau cones from contact reduction

    Full text link
    We consider a generalization of Einstein-Sasaki manifolds, which we characterize in terms both of spinors and differential forms, that in the real analytic case corresponds to contact manifolds whose symplectic cone is Calabi-Yau. We construct solvable examples in seven dimensions. Then, we consider circle actions that preserve the structure, and determine conditions for the contact reduction to carry an induced structure of the same type. We apply this construction to obtain a new hypo-contact structure on S^2\times T^3.Comment: 30 pages; v2: typos corrected, presentation improved, one reference added. To appear in Ann. Glob. Analysis and Geometr

    Weak and strong fillability of higher dimensional contact manifolds

    Full text link
    For contact manifolds in dimension three, the notions of weak and strong symplectic fillability and tightness are all known to be inequivalent. We extend these facts to higher dimensions: in particular, we define a natural generalization of weak fillings and prove that it is indeed weaker (at least in dimension five),while also being obstructed by all known manifestations of "overtwistedness". We also find the first examples of contact manifolds in all dimensions that are not symplectically fillable but also cannot be called overtwisted in any reasonable sense. These depend on a higher-dimensional analogue of Giroux torsion, which we define via the existence in all dimensions of exact symplectic manifolds with disconnected contact boundary.Comment: 68 pages, 5 figures. v2: Some attributions clarified, and other minor edits. v3: exposition improved using referee's comments. Published by Invent. Mat

    Algebraic Torsion in Contact Manifolds

    Full text link
    We extract a nonnegative integer-valued invariant, which we call the "order of algebraic torsion", from the Symplectic Field Theory of a closed contact manifold, and show that its finiteness gives obstructions to the existence of symplectic fillings and exact symplectic cobordisms. A contact manifold has algebraic torsion of order zero if and only if it is algebraically overtwisted (i.e. has trivial contact homology), and any contact 3-manifold with positive Giroux torsion has algebraic torsion of order one (though the converse is not true). We also construct examples for each nonnegative k of contact 3-manifolds that have algebraic torsion of order k but not k - 1, and derive consequences for contact surgeries on such manifolds. The appendix by Michael Hutchings gives an alternative proof of our cobordism obstructions in dimension three using a refinement of the contact invariant in Embedded Contact Homology.Comment: 53 pages, 4 figures, with an appendix by Michael Hutchings; v.3 is a final update to agree with the published paper, and also corrects a minor error that appeared in the published version of the appendi

    The geometry of recursion operators

    Full text link
    We study the fields of endomorphisms intertwining pairs of symplectic structures. Using these endomorphisms we prove an analogue of Moser's theorem for simultaneous isotopies of two families of symplectic forms. We also consider the geometric structures defined by pairs and triples of symplectic forms for which the squares of the intertwining endomorphisms are plus or minus the identity. For pairs of forms we recover the notions of symplectic pairs and of holomorphic symplectic structures. For triples we recover the notion of a hypersymplectic structure, and we also find three new structures that have not been considered before. One of these is the symplectic formulation of hyper-Kaehler geometry, which turns out to be a strict generalization of the usual definition in terms of differential or Kaehler geometry.Comment: cosmetic changes only; to appear in Comm. Math. Phy

    Tight Beltrami fields with symmetry

    Full text link
    Let MM be a compact orientable Seifered fibered 3-manifold without a boundary, and α\alpha an S1S^1-invariant contact form on MM. In a suitable adapted Riemannian metric to α\alpha, we provide a bound for the volume Vol(M)\text{Vol}(M) and the curvature, which implies the universal tightness of the contact structure ξ=kerα\xi=\ker\alpha.Comment: 26 page

    Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance

    Full text link
    The recoil proton polarization has been measured in the p (\vec e,e'\vec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y = (-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
    corecore