6,655 research outputs found
Sources Of Student Engagement In Introductory Physics For Life Sciences
We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students’ other coursework in biology and chemistry, and examples that make connections to what students perceive to be the “real world,” are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various “engagement pathways” by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways
Stellar Radial Velocities in the Old Open Cluster M67 (NGC 2682) I. Memberships, Binaries, and Kinematics
(Abridged) We present results from 13776 radial-velocity (RV) measurements of
1278 candidate members of the old (4 Gyr) open cluster M67 (NGC 2682). The
measurements are the results of a long-term survey that includes data from
seven telescopes with observations for some stars spanning over 40 years. For
narrow-lined stars, RVs are measured with precisions ranging from about 0.1 to
0.8 km/s. The combined stellar sample reaches from the brightest giants in the
cluster down to about 4 magnitudes below the main-sequence turnoff (V = 16.5),
covering a mass range of about 1.34 MSun to 0.76 MSun. Spatially, the sample
extends to a radius of 30 arcmin (7.4 pc in projection at a distant of 850 pc
or 6-7 core radii). We find M67 to have a mean RV of +33.64 km/s (with an
internal precision of +/- 0.03 km/s). For stars with >=3 measurements, we
derive RV membership probabilities and identify RV variables, finding 562
cluster members, 142 of which show significant RV variability. We use these
cluster members to construct a color-magnitude diagram and identify a rich
sample of stars that lie far from the standard single star isochrone, including
the well-known blue stragglers, sub-subgiants and yellow giants. These exotic
stars have a binary frequency of (at least) 80%, more than three times that
detected for stars in the remainder of the sample. We confirm that the cluster
is mass segregated, finding the binaries to be more centrally concentrated than
the single stars in our sample at the 99.8% confidence level. The blue
stragglers are centrally concentrated as compared to the solar-type
main-sequence single stars in the cluster at the 99.7% confidence level.
Accounting for both measurement precision and undetected binaries, we derive a
RV dispersion in M67 of 0.59 +0.07 -0.06 km/s, which yields a virial mass for
the cluster of 2100 +610 -550 MSun.
WIYN Open Cluster Study. LXVII.Comment: 19 pages, 10 figures, 4 tables, accepted for publication in The
Astronomical Journa
An excess of damped Lyman alpha galaxies near QSOs
We present a sample of 33 damped Lyman alpha systems (DLAs) discovered in the
Sloan Digital Sky Survey (SDSS) whose absorption redshifts (z_abs) are within
6000 km/s of the QSO's systemic redshift (z_sys). Our sample is based on 731
2.5 < z_sys < 4.5 non-broad-absorption-line (non-BAL) QSOs from Data Release 3
(DR3) of the SDSS. We estimate that our search is ~100 % complete for absorbers
with N(HI) >= 2e20 cm^-2. The derived number density of DLAs per unit redshift,
n(z), within v < 6000 km/s is higher (3.5 sigma significance) by almost a
factor of 2 than that of intervening absorbers observed in the SDSS DR3, i.e.
there is evidence for an overdensity of galaxies near the QSOs. This provides a
physical motivation for excluding DLAs at small velocity separations in surveys
of intervening 'field' DLAs. In addition, we find that the overdensity of
proximate DLAs is independent of the radio-loudness of the QSO, consistent with
the environments of radio-loud and radio-quiet QSOs being similar.Comment: Accepted for publication in MNRAS (13 pages, 6 figures
Using x ray images to detect substructure in a sample of 40 Abell clusters
Using a method for constraining the dynamical state of a galaxy cluster by examining the moments of its x-ray surface brightness distribution, we determine the statistics of cluster substructure for a sample of 40 Abell clusters. Using x-ray observations from the Einstein Observatory Imaging Proportional Counter (IPC), we measure the first moment M1(r), the ellipsoidal orientation angle theta2(r), and the axial ratio eta(r) at several different radii in the cluster. We determine the effects of systematics such as x-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC by measuring the same parameters on an ensemble of simulated cluster images. Due to the small band-pass of the IPC, the ICM emissivity is nearly independent of temperature so the intensity at each point in the IPC images is simply proportional to the emission measure calculated along the line of sight through the cluster (e.g. Fabricant et al. 1980). Therefore, barring a change superposition of two x-ray emitting clusters, a significant variation in the image centroid M1(r) as a function of radius indicates that the center of mass of the intra-cluster medium (ICM) varies with radius. We argue that such a configuration (essentially an m = 1 component in the ICM density distribution) is a non-equilibrium component; it results from an off-center subclump or a recent merger in the ICM
Current-Carrying Ground States in Mesoscopic and Macroscopic Systems
We extend a theorem of Bloch, which concerns the net orbital current carried
by an interacting electron system in equilibrium, to include mesoscopic
effects. We obtain a rigorous upper bound to the allowed ground-state current
in a ring or disc, for an interacting electron system in the presence of static
but otherwise arbitrary electric and magnetic fields. We also investigate the
effects of spin-orbit and current-current interactions on the upper bound.
Current-current interactions, caused by the magnetic field produced at a point
r by a moving electron at r, are found to reduce the upper bound by an amount
that is determined by the self-inductance of the system. A solvable model of an
electron system that includes current-current interactions is shown to realize
our upper bound, and the upper bound is compared with measurements of the
persistent current in a single ring.Comment: 7 pager, Revtex, 1 figure available from [email protected]
Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets
Over the last few years, needlets have a emerged as a useful tool for the
analysis of Cosmic Microwave Background (CMB) data. Our aim in this paper is
first to introduce in the CMB literature a different form of needlets, known as
Mexican needlets, first discussed in the mathematical literature by Geller and
Mayeli (2009a,b). We then proceed with an extensive study of the properties of
both standard and Mexican needlets; these properties depend on some parameters
which can be tuned in order to optimize the performance for a given
application. Our second aim in this paper is then to give practical advice on
how to adjust these parameters in order to achieve the best properties for a
given problem in CMB data analysis. In particular we investigate localization
properties in real and harmonic spaces and propose a recipe on how to quantify
the influence of galactic and point source masks on the needlet coefficients.
We also show that for certain parameter values, the Mexican needlets provide a
close approximation to the Spherical Mexican Hat Wavelets (whence their name),
with some advantages concerning their numerical implementation and the
derivation of their statistical properties.Comment: 40 pages, 11 figures, published version, main modification: added
section on more realistic galactic and point source mask
- …
