38 research outputs found
Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α
BACKGROUND: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa-in particular determining the root-is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. PRINCIPAL FINDINGS: Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. CONCLUSIONS/SIGNIFICANCE: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids
Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs. Rpb1, a Single-Copy Gene
Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas.The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia
Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?
Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?
The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to new insights into the systematics of the Parabasala and other groups of protists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with primitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free-living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data
A form of cell death with some features resembling apoptosis in the amitochondrial unicellular organism Trichomonas vaginalis.
One of hallmarks of apoptosis is the degradation and concomitant compaction of chromatin. It is assumed that caspases and caspase-independent pathways are rate limiting for the development of nuclear apoptosis. The caspase-independent pathway involves apoptosis-inducing factor (AIF) and leads to DNA fragmentation and peripheral chromatin condensation. Both pathways are the result of activation of death signals that the mitochondrion receives, integrates, and responds to with the release of various molecules (e.g., cytochrome c and AIF). In fact, both pathways have in common the final point of the DNA fragmentation and the mitochondrial origin of molecules that initiate the apoptotic events. Here, we examine the question of whether apoptosis or apoptotic-like processes exist in a unicellular organism that lacks mitochondria. We herein show that a form of cell death with some features resembling apoptosis is indeed present in Trichomonas vaginalis. Characterization of morphological aspects implicated in this event together with the preliminary biochemical data provided may lead to new insight about the evolutionary relationships between the different forms of programmed cell death identified so far
Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences
Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?
Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?
We demonstrate that the structure of an optical frequency comb transferred over several km of fiber can be preserved at a level compatible with the best optical frequency references currently available. Using an optical phase detection technique we measure the noise introduced by the fiber link and suppress it by stabilizing the optical path length. The measured fractional frequency stability of the transferred optical modes is 2 × 10-18 at a few thousand seconds and the mode spacing stability after optical-microwave conversion is better than 4 × 10-17 over the same time scale
Morphogenesis during division and griseofulvin-induced changes in the microtubular cytoskeleton in the parasitic protist, trichodermas vaginalis
The behavior of microtubular structures during division was followed by immunofluorescence in Trichomonas vaginalis using an anti-alpha-tubulin monoclonal antibody together with nuclear staining by DAPI, allowing us to describe successive mitotic stages. In contrast to recent reports, we showed that: (1) the microtubular axostyle-pelta complex depolymerized during division, (2) the flagella were assembled during mitosis, and (3) the flagellar number was restored in each daughter kinetid before cytokinesis. Observation of griseofulvin-treated T. vaginalis cells revealed that the elongation of the mitotic spindle or paradesmosis was not the main motile force separating the daughter kinetids to opposite poles during division, suggesting the existence of other mechanisms and/or molecules involved in this morphogenetic event. Examination of treated cells re-incubated in fresh medium showed the nucleation of microtubules radiating from the perinuclear area, the origin of which is discussed. Finally, we confirm the effectiveness of griseofulvin against T. vaginalis and propose that this antifungal drug could be a promising antitrichomonal agent
