1,345 research outputs found

    How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?

    Get PDF
    To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean κ values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions

    Spin dynamics simulations of the magnetic dynamics of RbMnF3_3 and direct comparison with experiment

    Full text link
    Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the classical Heisenberg antiferromagnet in simple cubic lattices with linear sizes L60L\leq 60. This system is widely recognized as an appropriate model for the magnetic properties of RbMnF3_3. Time-evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a new algorithm implemented by Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correlation function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical exponent was estimated to be z=(1.43±0.03)z=(1.43\pm 0.03), which is slightly lower than the dynamic scaling prediction, but in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion curve and the lineshapes obtained from our simulations with very recent experimental results for RbMnF3_3 are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR

    Reconstruction of a first-order phase transition from computer simulations of individual phases and subphases

    Full text link
    We present a new method for investigating first-order phase transitions using Monte Carlo simulations. It relies on the multiple-histogram method and uses solely histograms of individual phases. In addition, we extend the method to include histograms of subphases. The free energy difference between phases, necessary for attributing the correct statistical weights to the histograms, is determined by a detour in control parameter space via auxiliary systems with short relaxation times. We apply this method to a recently introduced model for structure formation in polypeptides for which other methods fail.Comment: 13 pages in preprint mode, REVTeX, 2 Figures available from the authors ([email protected], [email protected]

    Critical dynamics in the 2d classical XY-model: a spin dynamics study

    Full text link
    Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic behavior of the classical three component XY-model (i.e. the anisotropic limit of an easy-plane Heisenberg ferromagnet), on square lattices of size up to 192^2, for several temperatures below, at, and above T_KT. The temporal evolution of spin configurations was determined numerically from coupled equations of motion for individual spins by a fourth order predictor-corrector method, with initial spin configurations generated by a hybrid Monte Carlo algorithm. The neutron scattering function S(q,omega) was calculated from the resultant space-time displaced spin-spin correlation function. Pronounced spin-wave peaks were found both in the in-plane and the out-of-plane scattering function over a wide range of temperatures. The in-plane scattering function S^xx also has a large number of clear but weak additional peaks, which we interpret to come from two-spin-wave scattering. In addition, we observed a small central peak in S^xx, even at temperatures well below the phase transition. We used dynamic finite size scaling theory to extract the dynamic critical exponent z. We find z=1.00(4) for all T <= T_KT, in excellent agreement with theoretical predictions, although the shape of S(q,omega) is not well described by current theory.Comment: 31 pages, LaTex, 13 figures (38 subfigures) included as eps-files, needs psfig, 260 K

    Novel Analytical Calculation Method for the Non-Linear Ψ -i- Characteristic of Switched-Reluctance-Machines in Arbitrary Rotor Positions

    Get PDF
    Abstract The non-linear Ψ -i-characteristic is crucial for the design of switched reluctance machines. Known analytical calculations are based on complex models of the magnetic circuit or on functions needing a fitting procedure (using measured or FEM-calculated data). In this paper, a method is presented that requires only very few input data, which can be deduced easily from the geometry of the machine. Comparisons with measured data show an acceptable correlation for arbitrary rotor positions, qualifying this method to be used in the design stage of new drives

    Pixels and people: Exploring the dynamics of engagement and disengagement in Minecraft's multiplayer realm

    Get PDF
    Engagement is often viewed as the holy grail of digital experiences, particularly video games, while disengagement is seen as a consequence of poor design. This study attempts to flip the script, exploring disengagement as a natural part of the user journey rather than a failure of game design. Focusing on the popular open-world game Minecraft, the research investigates dynamics triggering engagement and disengagement in the multiplayer mode through the lenses of established frameworks like the Process Model of Engagement as well as the Mechanics, Dynamics, and Aesthetics model. Semi-structured focus-group interviews conducted with 15 participants analyzed using Mayring's content analysis revealed social connections, novelty, progression, goal-driven gameplay, and adrenaline-fueled combat as key drivers that keep players hooked. Yet, the very act of achieving goals, absence of friends, overplay, setbacks, skill gaps, negative interactions, and the demands of the real world can trigger a powerful urge to disengage. Far from a design flaw, this research expands the body of literature suggesting that disengagement is a vital component of user autonomy. By redefining success beyond mere engagement metrics, the study paves the way for responsible gaming practices that empower players to make informed choices about their level of involvement. It beckons us to embrace a holistic vision of genuinely sustainable, ethical, and meaningful digital experiences that respect user autonomy and cultivate healthy engagement patterns

    Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes

    Get PDF
    Objectives: One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie–adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression. Design: Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells. Results: An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR. Conclusions: CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory cytokines/chemokines produced by infected islets. T1D is associated with increased levels of certain chemokines/cytokines in the islets and this might be the mechanism behind the increased expression of CAR in TID islets

    Dinâmica populacional de Bemisia tabaci biótipo B em tomate monocultivo e consorciado com coentro sob cultivo orgânico e convencional.

    Get PDF
    A mosca-branca Bemisia tabaci Biótipo B (Hemiptera: Aleyrodidae), é um herbívoro de difícil controle devido à alta plasticidade genotípica da espécie. No tomateiro pode causar danos severos principalmente pela transmissão de diversas viroses. O manejo do sistema de produção e o consórcio de culturas podem ter um efeito direto nas populações desse herbívoro, sem que seja necessária a aplicação de inseticidas. Avaliou-se a influência dos sistemas de produção orgânico e convencional e o consórcio tomate-coentro na dinâmica populacional da mosca-branca no campo experimental da Embrapa Hortaliças, de maio a setembro/06. O monitoramento dos adultos da mosca-branca e de seus inimigos naturais foi realizado utilizando-se armadilhas adesivas amarelas fixadas nas bordas e no interior das parcelas experimentais e a amostragem de ninfas foi realizada por observação direta das folhas de tomate no campo. Embora as populações ao redor dos diferentes tratamentos fossem equivalentes, a abundância de adultos de mosca-branca foi significativamente menor nas parcelas de tomate consorciado com coentro, tanto no sistema convencional como orgânico. Apenas o consórcio tomatecoentro em sistema orgânico apresentou redução significativa na quantidade de ninfas por planta em relação aos demais tratamentos. Os inimigos naturais foram significativamente mais abundantes em sistema orgânico e foi verificada uma correlação negativa da abundância dos inimigos naturais e a quantidade de ninfas por planta. A associação tomate-coentro e o manejo orgânico do agroecossistema favoreceram ao controle biológico natural da mosca-branca

    Joule-heating Effects In the Amorphous Fe40ni40b20 Alloy

    Get PDF
    The effects of Joule heating on the amorphous Fe40Ni40B20 alloy are investigated by measuring the time behavior of the electrical resistance of ribbon strips during such a treatment. The structural transformations occurring in subsequent stages of the process are studied by means of x-ray-diffraction, differential-scanning-calorimetry, and magnetic-permeability measurements. A continuous evolution from a fully amorphous to a fully crystalline structure may be followed. The crystallization mechanisms observed in Joule-heated samples differ from the ones occurring under conventional heating conditions. The electrical resistance displays a bump in the course of Joule heating. A quantitative model relating such a bump to the extra heat released to the sample by fast crystallization is proposed and discussed
    corecore