73 research outputs found
Monte Carlo simulations of random copolymers at a selective interface
We investigate numerically using the bond--fluctuation model the adsorption
of a random AB--copolymer at the interface between two solvents. From our
results we infer several scaling relations: the radius of gyration of the
copolymer in the direction perpendicular to the interface () scales
with , the interfacial selectivity strength, as
where is the usual Flory exponent and
is the copolymer's length; furthermore the monomer density at the interface
scales as for small . We also determine numerically the
monomer densities in the two solvents and discuss their dependence on the
distance from the interface.Comment: Latex text file appended with figures.tar.g
Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution
We study the multifractal moments of the current distribution in randomly
diluted resistor networks near the percolation treshold. When an external
current is applied between to terminals and of the network, the
th multifractal moment scales as , where is the correlation length exponent of
the isotropic percolation universality class. By applying our concept of master
operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of
multifractal exponents for to two-loop order. We find
that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure
Topological effects in ring polymers: A computer simulation study
Unconcatenated, unknotted polymer rings in the melt are subject to strong
interactions with neighboring chains due to the presence of topological
constraints. We study this by computer simulation using the bond-fluctuation
algorithm for chains with up to N=512 statistical segments at a volume fraction
\Phi=0.5 and show that rings in the melt are more compact than gaussian chains.
A careful finite size analysis of the average ring size R \propto N^{\nu}
yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like
argument for the topologica interactions. We show (using the same algorithm)
that the dynamics of molten rings is similar to that of linear chains of the
same mass, confirming recent experimental findings. The diffusion constant
varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than
that of corresponding linear chains. For the ring sizes considered (up to 256
statistical segments) we find only one characteristic time scale \tau_{ee}
\propto N^{2.0(2); this is shown by the collapse of several mean-square
displacements and correlation functions onto corresponding master curves.
Because of the shrunken state of the chain, this scaling is not compatible with
simple Rouse motion. It applies for all sizes of ring studied and no sign of a
crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late
Multifractal properties of resistor diode percolation
Focusing on multifractal properties we investigate electric transport on
random resistor diode networks at the phase transition between the
non-percolating and the directed percolating phase. Building on first
principles such as symmetries and relevance we derive a field theoretic
Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of
the current distribution that are governed by a family of critical exponents
. We calculate the family to two-loop order in a
diagrammatic perturbation calculation augmented by renormalization group
methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing
Large-scale molecular simulations are performed to investigate tensile
failure of polymer interfaces as a function of welding time . Changes in the
tensile stress, mode of failure and interfacial fracture energy are
correlated to changes in the interfacial entanglements as determined from
Primitive Path Analysis. Bulk polymers fail through craze formation, followed
by craze breakdown through chain scission. At small welded interfaces are
not strong enough to support craze formation and fail at small strains through
chain pullout at the interface. Once chains have formed an average of about one
entanglement across the interface, a stable craze is formed throughout the
sample. The failure stress of the craze rises with welding time and the mode of
craze breakdown changes from chain pullout to chain scission as the interface
approaches bulk strength. The interfacial fracture energy is calculated
by coupling the simulation results to a continuum fracture mechanics model. As
in experiment, increases as before saturating at the average
bulk fracture energy . As in previous simulations of shear strength,
saturation coincides with the recovery of the bulk entanglement density. Before
saturation, is proportional to the areal density of interfacial
entanglements. Immiscibiltiy limits interdiffusion and thus suppresses
entanglements at the interface. Even small degrees of immisciblity reduce
interfacial entanglements enough that failure occurs by chain pullout and
Dependence of Polymer Thin Film Adhesion Energy on Cohesive Interactions between Chains
Where do polymer adhesives fail?
We use molecular-dynamics simulations of a polymer film confined between
two walls to isolate the factors that control where an adhesive bond
breaks.
Failure occurs either at the wall/film interface (adhesive failure) or
within the film (cohesive failure).
Most theories relate the location of failure to
equilibrium interfacial free energies.
However, we find
that the location of failure coincides with the region of lowest initial
yield stress and cannot be predicted from equilibrium interfacial free
energies
Efficient excision of the upstream large intron from P4-generated pre-mRNA of the parvovirus minute virus of mice requires at least one donor and the 3' splice site of the small downstream intron
We have previously shown that efficient excision of the upstream large intron from P4-generated pre-mRNA of the autonomous parvovirus minute virus of mice depends upon at least the initial presence of sequences within the downstream small intron (Q. Zhao, R. V. Schoborg, and D. J. Pintel, J. Virol. 68:2849-2859, 1994). In this report, we show that the requirement of downstream small intron sequences is complex and that efficient excision of the upstream intron requires at least one small intron donor and the 3' splice site. In the absence of both small intron donors, a new spliced product is produced in which the intervening exon is skipped and the large intron donor at nucleotide 514 is joined to a small intron acceptor. Exon skipping caused by the loss of the two small intron donors can be overcome, and the excision of the large intron can be regained by mutations that improve the large intron polypyrimidine tract. These results are consistent with a model in which the binding of multiple splicing factors that assemble at both a downstream donor and acceptor facilitates the binding of splicing factors to the weak polypyrimidine tract of the upstream large intron, thereby defining the intervening exon and promoting excision of the upstream intron.</jats:p
- …
