512 research outputs found
Finding instabilities in the community structure of complex networks
The problem of finding clusters in complex networks has been extensively
studied by mathematicians, computer scientists and, more recently, by
physicists. Many of the existing algorithms partition a network into clear
clusters, without overlap. We here introduce a method to identify the nodes
lying ``between clusters'' and that allows for a general measure of the
stability of the clusters. This is done by adding noise over the weights of the
edges of the network. Our method can in principle be applied with any
clustering algorithm, provided that it works on weighted networks. We present
several applications on real-world networks using the Markov Clustering
Algorithm (MCL).Comment: 4 pages, 5 figure
Uncovering the topology of configuration space networks
The configuration space network (CSN) of a dynamical system is an effective
approach to represent the ensemble of configurations sampled during a
simulation and their dynamic connectivity. To elucidate the connection between
the CSN topology and the underlying free-energy landscape governing the system
dynamics and thermodynamics, an analytical soluti on is provided to explain the
heavy tail of the degree distribution, neighbor co nnectivity and clustering
coefficient. This derivation allows to understand the universal CSN network
topology observed in systems ranging from a simple quadratic well to the native
state of the beta3s peptide and a 2D lattice heteropolymer. Moreover CSN are
shown to fall in the general class of complex networks describe d by the
fitness model.Comment: 6 figure
'Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization.
The remarkable clinical efficacy of the immune checkpoint blockade therapies has motivated researchers to discover immunogenic epitopes and exploit them for personalized vaccines. Human leukocyte antigen (HLA)-binding peptides derived from processing and presentation of mutated proteins are one of the leading targets for T-cell recognition of cancer cells. Currently, most studies attempt to identify neoantigens based on predicted affinity to HLA molecules, but the performance of such prediction algorithms is rather poor for rare HLA class I alleles and for HLA class II. Direct identification of neoantigens by mass spectrometry (MS) is becoming feasible; however, it is not yet applicable to most patients and lacks sensitivity. In an attempt to capitalize on existing immunopeptidomics data and extract information that could complement HLA-binding prediction, we first compiled a large HLA class I and class II immunopeptidomics database across dozens of cell types and HLA allotypes and detected hotspots that are subsequences of proteins frequently presented. About 3% of the peptidome was detected in both class I and class II. Based on the gene ontology of their source proteins and the peptide's length, we propose that their processing may partake by the cellular class II presentation machinery. Our database captures the global nature of the in vivo peptidome averaged over many HLA alleles, and therefore, reflects the propensity of peptides to be presented on HLA complexes, which is complementary to the existing neoantigen prediction features such as binding affinity and stability or RNA abundance. We further introduce two immunopeptidomics MS-based features to guide prioritization of neoantigens: the number of peptides matching a protein in our database and the overlap of the predicted wild-type peptide with other peptides in our database. We show as a proof of concept that our immunopeptidomics MS-based features improved neoantigen prioritization by up to 50%. Overall, our work shows that, in addition to providing huge training data to improve the HLA binding prediction, immunopeptidomics also captures other aspects of the natural in vivo presentation that significantly improve prediction of clinically relevant neoantigens
Perceived importance of components of asynchronous music in circuit training
This study examined regular exercisers’ perceptions of specific components of music
during circuit training. Twenty-four men (38.8 years, s = 11.8 years) and 31 women
(32.4 years, s = 9.6 years) completed two questionnaires immediately after a circuit
training class. Participants rated the importance of 13 components of music (rhythm,
melody, etc.) in relation to exercise enjoyment, and each completed the Affect Intensity
Measure (Larsen, 1984) to measure emotional reactivity. Independent t tests were used
to evaluate gender differences in perceptions of musical importance. Pearson
correlations were computed to evaluate the relationships between affect intensity, age
and importance of musical components. Consistent with previous research and
theoretical predictions, rhythm response components (rhythm, tempo, beat) were rated
as most important. Women rated the importance of melody significantly higher than did
men, while men gave more importance to music associated with sport. Affect intensity
was found to be positively and significantly related to the perceived importance of
melody, lyrical content, musical style, personal associations and emotional content.
Results suggest that exercise leaders need to be sensitive to personal factors when
choosing music to accompany exercise. Qualitative research that focuses on the
personal meaning of music is encouraged
SwissTargetPrediction: a web server for target prediction of bioactive small molecules.
Bioactive small molecules, such as drugs or metabolites, bind to proteins or other macro-molecular targets to modulate their activity, which in turn results in the observed phenotypic effects. For this reason, mapping the targets of bioactive small molecules is a key step toward unraveling the molecular mechanisms underlying their bioactivity and predicting potential side effects or cross-reactivity. Recently, large datasets of protein-small molecule interactions have become available, providing a unique source of information for the development of knowledge-based approaches to computationally identify new targets for uncharacterized molecules or secondary targets for known molecules. Here, we introduce SwissTargetPrediction, a web server to accurately predict the targets of bioactive molecules based on a combination of 2D and 3D similarity measures with known ligands. Predictions can be carried out in five different organisms, and mapping predictions by homology within and between different species is enabled for close paralogs and orthologs. SwissTargetPrediction is accessible free of charge and without login requirement at http://www.swisstargetprediction.ch
MUSI: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets
Peptide recognition domains and transcription factors play crucial roles in cellular signaling. They bind linear stretches of amino acids or nucleotides, respectively, with high specificity. Experimental techniques that assess the binding specificity of these domains, such as microarrays or phage display, can retrieve thousands of distinct ligands, providing detailed insight into binding specificity. In particular, the advent of next-generation sequencing has recently increased the throughput of such methods by several orders of magnitude. These advances have helped reveal the presence of distinct binding specificity classes that co-exist within a set of ligands interacting with the same target. Here, we introduce a software system called MUSI that can rapidly analyze very large data sets of binding sequences to determine the relevant binding specificity patterns. Our pipeline provides two major advances. First, it can detect previously unrecognized multiple specificity patterns in any data set. Second, it offers integrated processing of very large data sets from next-generation sequencing machines. The results are visualized as multiple sequence logos describing the different binding preferences of the protein under investigation. We demonstrate the performance of MUSI by analyzing recent phage display data for human SH3 domains as well as microarray data for mouse transcription factor
Predicting Antigen Presentation-What Could We Learn From a Million Peptides?
Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition
Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation
In this paper, we investigate the conformational dynamics of alanine
dipeptide under an external electric field by nonequilibrium molecular dynamics
simulation. We consider the case of a constant and of an oscillatory field. In
this context we propose a procedure to implement the temperature control, which
removes the irrelevant thermal effects of the field. For the constant field
different time-scales are identified in the conformational, dipole moment, and
orientational dynamics. Moreover, we prove that the solvent structure only
marginally changes when the external field is switched on. In the case of
oscillatory field, the conformational changes are shown to be as strong as in
the previous case, and non-trivial nonequilibrium circular paths in the
conformation space are revealed by calculating the integrated net probability
fluxes.Comment: 23 pages, 12 figure
Exploring the Free Energy Landscape: From Dynamics to Networks and Back
The knowledge of the Free Energy Landscape topology is the essential key to
understand many biochemical processes. The determination of the conformers of a
protein and their basins of attraction takes a central role for studying
molecular isomerization reactions. In this work, we present a novel framework
to unveil the features of a Free Energy Landscape answering questions such as
how many meta-stable conformers are, how the hierarchical relationship among
them is, or what the structure and kinetics of the transition paths are.
Exploring the landscape by molecular dynamics simulations, the microscopic data
of the trajectory are encoded into a Conformational Markov Network. The
structure of this graph reveals the regions of the conformational space
corresponding to the basins of attraction. In addition, handling the
Conformational Markov Network, relevant kinetic magnitudes as dwell times or
rate constants, and the hierarchical relationship among basins, complete the
global picture of the landscape. We show the power of the analysis studying a
toy model of a funnel-like potential and computing efficiently the conformers
of a short peptide, the dialanine, paving the way to a systematic study of the
Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press
Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes
When network and graph theory are used in the study of complex systems, a
typically finite set of nodes of the network under consideration is frequently
either explicitly or implicitly considered representative of a much larger
finite or infinite region or set of objects of interest. The selection
procedure, e.g., formation of a subset or some kind of discretization or
aggregation, typically results in individual nodes of the studied network
representing quite differently sized parts of the domain of interest. This
heterogeneity may induce substantial bias and artifacts in derived network
statistics. To avoid this bias, we propose an axiomatic scheme based on the
idea of node splitting invariance to derive consistently weighted variants of
various commonly used statistical network measures. The practical relevance and
applicability of our approach is demonstrated for a number of example networks
from different fields of research, and is shown to be of fundamental importance
in particular in the study of spatially embedded functional networks derived
from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure
- …
