128 research outputs found
Study in optimization of microcircuit design Final report
Optimization of microcircuit reliabilit
High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor
Thick, high quality 4H-SiC epilayers have been grown in a vertical hot-wall
chemical vapor deposition system at a high growth rate on (0001) 80 off-axis
substrates. We discuss the use of dichlorosilane as the Si-precursor for 4H-SiC
epitaxial growth as it provides the most direct decomposition route into SiCl2,
which is the predominant growth species in chlorinated chemistries. A specular
surface morphology was attained by limiting the hydrogen etch rate until the
system was equilibrated at the desired growth temperature. The RMS roughness of
the grown films ranged from 0.5-2.0 nm with very few morphological defects
(carrots, triangular defects, etc.) being introduced, while enabling growth
rates of 30-100 \mum/hr, 5-15 times higher than most conventional growths.
Site-competition epitaxy was observed over a wide range of C/Si ratios, with
doping concentrations < 1x1014 cm-3 being recorded. X-ray rocking curves
indicated that the epilayers were of high crystallinity, with linewidths as
narrow as 7.8 arcsec being observed, while microwave photoconductive decay
(\muPCD) measurements indicated that these films had high injection (ambipolar)
carrier lifetimes in the range of 2 \mus
Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"
The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated
Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications
This review presents an overview of the thermal properties of mesoscopic
structures. The discussion is based on the concept of electron energy
distribution, and, in particular, on controlling and probing it. The
temperature of an electron gas is determined by this distribution:
refrigeration is equivalent to narrowing it, and thermometry is probing its
convolution with a function characterizing the measuring device. Temperature
exists, strictly speaking, only in quasiequilibrium in which the distribution
follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur
due to slow relaxation rates of the electrons, e.g., among themselves or with
lattice phonons. Observation and applications of nonequilibrium phenomena are
also discussed. The focus in this paper is at low temperatures, primarily below
4 K, where physical phenomena on mesoscopic scales and hybrid combinations of
various types of materials, e.g., superconductors, normal metals, insulators,
and doped semiconductors, open up a rich variety of device concepts. This
review starts with an introduction to theoretical concepts and experimental
results on thermal properties of mesoscopic structures. Then thermometry and
refrigeration are examined with an emphasis on experiments. An immediate
application of solid-state refrigeration and thermometry is in ultrasensitive
radiation detection, which is discussed in depth. This review concludes with a
summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure
Integrated motor drives: state of the art and future trends
With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system.
This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented
DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program
The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines
Radiation dose-rate effects on gene expression for human biodosimetry
Background: The effects of dose-rate and its implications on radiation biodosimetry methods are not well studied in the context of large-scale radiological scenarios. There are significant health risks to individuals exposed to an acute dose, but a realistic scenario would include exposure to both high and low dose-rates, from both external and internal radioactivity. It is important therefore, to understand the biological response to prolonged exposure; and further, discover biomarkers that can be used to estimate damage from low-dose rate exposures and propose appropriate clinical treatment. Methods: We irradiated human whole blood ex vivo to three doses, 0.56 Gy, 2.23 Gy and 4.45 Gy, using two dose rates: acute, 1.03 Gy/min and a low dose-rate, 3.1 mGy/min. After 24 h, we isolated RNA from blood cells and these were hybridized to Agilent Whole Human genome microarrays. We validated the microarray results using qRT-PCR. Results: Microarray results showed that there were 454 significantly differentially expressed genes after prolonged
exposure to all doses. After acute exposure, 598 genes were differentially expressed in response to all doses. Gene ontology terms enriched in both sets of genes were related to immune processes and B-cell mediated immunity. Genes responding to acute exposure were also enriched in functions related to natural killer cell activation and cell-to-cell signaling. As expected, the p53 pathway was found to be significantly enriched at all doses and by both dose-rates of radiation. A support vectors machine classifier was able to distinguish between dose-rates with 100%
accuracy using leave-one-out cross-validation. Conclusions: In this study we found that low dose-rate exposure can result in distinctive gene expression patterns compared with acute exposures. We were able to successfully distinguish low dose-rate exposed samples from acute
dose exposed samples at 24 h, using a gene expression-based classifier. These genes are candidates for further testing as markers to classify exposure based on dose-rate
Recommended from our members
Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells
We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60–100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI.
We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI
Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering
<p>Abstract</p> <p>Background</p> <p>The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA), a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM).</p> <p>Results</p> <p>While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K)-specific demethylase 5B) and HDACs (histone deacetylases), which could epigenetically coordinate gene expression after irradiation.</p> <p>Conclusions</p> <p>In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.</p
- …
