894 research outputs found
Extra dimensions, orthopositronium decay, and stellar cooling
In a class of extra dimensional models with a warped metric and a single
brane the photon can be localized on the brane by gravity only. An intriguing
feature of these models is the possibility of the photon escaping into the
extra dimensions. The search for this effect has motivated the present round of
precision orthopositronium decay experiments. We point out that in this
framework a photon in plasma should be metastable. We consider the
astrophysical consequences of this observation, in particular, what it implies
for the plasmon decay rate in globular cluster stars and for the core-collapse
supernova cooling rate. The resulting bounds on the model parameter exceed the
possible reach of orthopositronium experiments by many orders of magnitude.Comment: 13 pages, no figure
A planetary nervous system for social mining and collective awareness
We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac
Magnetic Helicity Generation from the Cosmic Axion Field
The coupling between a primordial magnetic field and the cosmic axion field
generates a helical component of the magnetic field around the time in which
the axion starts to oscillate. If the energy density of the seed magnetic field
is comparable to the energy density of the universe at that time, then the
resulting magnetic helicity is about |H_B| \simeq (10^{-20} G)^2 kpc and
remains constant after its generation. As a corollary, we find that the
standard properties of the oscillating axion remain unchanged even in the
presence of very strong magnetic fields.Comment: 6 pages, 2 figures. Accepted for publication in Phys. Rev. D. Minor
revisions and new references adde
A planetary nervous system for social mining and collective awareness
We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.Seventh Framework Programme (European Commission) (grant agreement No. 284709
A Note on the Cosmic Evolution of the Axion in a Strong Magnetic Field
It has been pointed out in the literature that in the presence of an external
magnetic field the axion mass receives an electromagnetic contribution. We show
that if a magnetic field with energy density larger than ~10^{-8} times the
energy density of the Universe existed at temperatures of a few GeV, that
contribution would be dominant and consequently the cosmic evolution of the
axion field would change substantially. In particular, the expected axion relic
abundance would be lowered, allowing a small relaxation of the present
cosmological bound on the Peccei-Quinn constant.Comment: 2 pages, no figures. Minor changes. References added. Accepted for
publication in JCA
Recommended from our members
Visually driven analysis of movement data by progressive clustering
The paper investigates the possibilities of using clustering techniques in visual exploration and analysis of large numbers of trajectories, that is, sequences of time-stamped locations of some moving entities. Trajectories are complex spatio-temporal constructs characterized by diverse non-trivial properties. To assess the degree of (dis)similarity between trajectories, specific methods (distance functions) are required. A single distance function accounting for all properties of trajectories, (1) is difficult to build, (2) would require much time to compute, and (3) might be difficult to understand and to use. We suggest the procedure of progressive clustering where a simple distance function with a clear meaning is applied on each step, which leads to easily interpretable outcomes. Successive application of several different functions enables sophisticated analyses through gradual refinement of earlier obtained results. Besides the advantages from the sense-making perspective, progressive clustering enables a rational work organization where time-consuming computations are applied to relatively small potentially interesting subsets obtained by means of ‘cheap’ distance functions producing quick results. We introduce the concept of progressive clustering by an example of analyzing a large real data set. We also review the existing clustering methods, describe the method OPTICS suitable for progressive clustering of trajectories, and briefly present several distance functions for trajectories
On the Perturbative Stability of Quantum Field Theories in de Sitter Space
We use a field theoretic generalization of the Wigner-Weisskopf method to
study the stability of the Bunch-Davies vacuum state for a massless,
conformally coupled interacting test field in de Sitter space. We find that in
theory the vacuum does {\em not} decay, while in
non-conformally invariant models, the vacuum decays as a consequence of a
vacuum wave function renormalization that depends \emph{singularly} on
(conformal) time and is proportional to the spatial volume. In a particular
regularization scheme the vacuum wave function renormalization is the same as
in Minkowski spacetime, but in terms of the \emph{physical volume}, which leads
to an interpretation of the decay. A simple example of the impact of vacuum
decay upon a non-gaussian correlation is discussed. Single particle excitations
also decay into two particle states, leading to particle production that
hastens the exiting of modes from the de Sitter horizon resulting in the
production of \emph{entangled superhorizon pairs} with a population consistent
with unitary evolution. We find a non-perturbative, self-consistent "screening"
mechanism that shuts off vacuum decay asymptotically, leading to a stationary
vacuum state in a manner not unlike the approach to a fixed point in the space
of states.Comment: 36 pages, 4 figures. Version to appear in JHEP, more explanation
Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles
We revise the bound from the supernova SN1987A on the coupling of ultralight
axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs
would be emitted via the Primakoff process, and eventually convert into gamma
rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in
the GRS instrument of the SMM satellite in coincidence with the observation of
the neutrinos emitted from SN1987A therefore provides a strong bound on their
coupling to photons. Due to the large uncertainty associated with the current
bound, we revise this argument, based on state-of-the-art physical inputs both
for the supernova models and for the Milky-Way magnetic field. Furthermore, we
provide major amendments, such as the consistent treatment of
nucleon-degeneracy effects and of the reduction of the nuclear masses in the
hot and dense nuclear medium of the supernova. With these improvements, we
obtain a new upper limit on the photon-ALP coupling: g_{a\gamma} < 5.3 x
10^{-12} GeV^{-1}, for m_a < 4.4 x 10^{-10} eV, and we also give its dependence
at larger ALP masses. Moreover, we discuss how much the Fermi-LAT satellite
experiment could improve this bound, should a close-enough supernova explode in
the near future.Comment: Accepted for publication in JCAP (December 22nd, 2014
Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory
We investigate the mapping of conformal correlators and of their anomalies
from configuration to momentum space for general dimensions, focusing on the
anomalous correlators , - involving the energy-momentum tensor
with a vector or a scalar operator () - and the 3-graviton vertex
. We compute the , and one-loop vertex functions in
dimensional regularization for free field theories involving conformal scalar,
fermion and vector fields. Since there are only one or two independent tensor
structures solving all the conformal Ward identities for the or
vertex functions respectively, and three independent tensor structures for the
vertex, and the coefficients of these tensors are known for free fields,
it is possible to identify the corresponding tensors in momentum space from the
computation of the correlators for free fields. This works in general
dimensions for and correlators, but only in 4 dimensions for ,
since vector fields are conformal only in . In this way the general
solution of the Ward identities including anomalous ones for these correlators
in (Euclidean) position space, found by Osborn and Petkou is mapped to the
ordinary diagrammatic one in momentum space. We give simplified expressions of
all these correlators in configuration space which are explicitly Fourier
integrable and provide a diagrammatic interpretation of all the contact terms
arising when two or more of the points coincide. We discuss how the anomalies
arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde
Report of the AOD Format Task Force
The Analysis Object Data (AOD) are produced by ATLAS reconstruction and are the main input for most analyses. AOD, like the Event Summary Data (ESD, the other main output of reconstruction) are written as POOL files and are readable from Athena, and, to a limited extent, from ROOT. The AOD typical size, processing speed, and their relatively complex class structure and package dependencies, make them inconvenient to use for most interactive analysis. According to the computing model, interactive analysis will be based on Derived Physics Data (DPD), a user-defined format commonly produced from the AOD. As of release 12.0.3 it is common practice to write DPD as Athena-aware Ntuples (AANT) in ROOT. In an effort to organize and standardize AANT, we introduced the Structured Athena-aware Ntuple (SAN), an AANT containing objects that behave, as much as it is allowed by ROOT interpreter limitations, as their AOD counterparts. Recently it was proposed to extend SAN functionality beyond DPD implementation. SAN objects would be used as AOD objects. The TOB formed our task force with the mandate to "perform a technical evaluation of the two proposals, one based upon the existing AOD classes and architecture, the other upon Structured Athena-Aware Ntuples. [...] Criteria for the evaluation should include I/O performance, support for schema evolution, suitability for end user analysis and simplicity.
- …
