367 research outputs found
Dynamic stability of space vehicles. Volume 3 - Torsional vibration modes
Torsional model development and model calculations for cylindrical space vehicle systems and systems employing clustered tank
NLO corrections to the photon impact factor: Combining real and virtual corrections.
In this third part of our calculation of the QCD NLO corrections to the
photon impact factor we combine our previous results for the real corrections
with the singular pieces of the virtual corrections and present finite analytic
expressions for the quark-antiquark-gluon intermediate state inside the photon
impact factor. We begin with a list of the infrared singular pieces of the
virtual correction, obtained in the first step of our program. We then list the
complete results for the real corrections (longitudinal and transverse photon
polarization). In the next step we define, for the real corrections, the collinear
and soft singular regions and calculate their contributions to the impact factor.
We then subtract the contribution due to the central region. Finally, we
combine the real corrections with the singular pieces of the virtual corrections
and obtain our finite results
Herwig++ 2.0 Release Note
A new release of the Monte Carlo program Herwig++ (version 2.0) is now
available. This is the first version of the program which can be used for
hadron-hadron physics and includes the full simulation of both initial- and
final-state QCD radiation.Comment: Source code and additional information available at
http://hepforge.cedar.ac.uk/herwig
Colour reconnections in Herwig++
We describe the implementation details of the colour reconnection model in
the event generator Herwig++. We study the impact on final-state observables in
detail and confirm the model idea from colour preconfinement on the basis of
studies within the cluster hadronization model. Moreover, we show that the
description of minimum bias and underlying event data at the LHC is improved
with this model and present results of a tune to available data.Comment: 19 pages, 21 figures, 2 tables. Matches with published versio
A probabilistic approach to emission-line galaxy classification
We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional
emission-line classification schemes of galaxy ionization sources: the
Baldwin-Phillips-Terlevich (BPT) and vs. [NII]/H
(WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey
Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically
define classes of galaxies in a three-dimensional space spanned by the
[OIII]/H, [NII]/H, and EW(H), optical
parameters. The best-fit GMM based on several statistical criteria suggests a
solution around four Gaussian components (GCs), which are capable to explain up
to 97 per cent of the data variance. Using elements of information theory, we
compare each GC to their respective astronomical counterpart. GC1 and GC4 are
associated with star-forming galaxies, suggesting the need to define a new
starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN)
class and WHAN's weak AGN class. GC3 is associated with BPT's composite class
and WHAN's strong AGN class. Conversely, there is no statistical evidence --
based on four GCs -- for the existence of a Seyfert/LINER dichotomy in our
sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The
GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN
diagrams respectively. Subtleties aside, we demonstrate the potential of our
methodology to recover/unravel different objects inside the wilderness of
astronomical datasets, without lacking the ability to convey physically
interpretable results. The probabilistic classifications from the GMM analysis
are publicly available within the COINtoolbox
(https://cointoolbox.github.io/GMM\_Catalogue/).Comment: Accepted for publication in MNRA
Multi-Parton Interactions at the LHC
We review the recent progress in the theoretical description and experimental
observation of multiple parton interactions. Subjects covered include
experimental measurements of minimum bias interactions and of the underlying
event, models of soft physics implemented in Monte Carlo generators,
developments in the theoretical description of multiple parton interactions and
phenomenological studies of double parton scattering. This article stems from
contributions presented at the Helmholtz Alliance workshop on "Multi-Parton
Interactions at the LHC", DESY Hamburg, 13-15 September 2010.Comment: 68 page
Regge-cascade hadronization
We argue that the evolution of coloured partons into colour-singlet hadrons
has approximate factorization into an extended parton-shower phase and a
colour-singlet resonance--pole phase. The amplitude for the conversion of
colour connected partons into hadrons necessarily resembles Regge-pole
amplitudes since qq-bar resonance amplitudes and Regge-pole amplitudes are
related by duality. A `Regge-cascade' factorization property of the N-point
Veneziano amplitude provides further justification of this protocol. This
latter factorization property, in turn, allows the construction of general
multi-hadron amplitudes in amplitude-squared factorized form from (1->2) link
amplitudes. We suggest an algorithm with cascade-decay configuration, ordered
in the transverse momentum, suitable for Monte-Carlo simulation. We make a
simple implementation of this procedure in Herwig++, obtaining some improvement
to the description of the event-shape distributions at LEP.Comment: 10 pages, 9 figure
Evaluation of the Theoretical Uncertainties in the Z to ll Cross Sections at the LHC
We study the sources of systematic errors in the measurement of the Z to ll
cross-sections at the LHC. We consider the systematic errors in both the total
cross-section and acceptance for anticipated experimental cuts. We include the
best available analysis of QCD effects at NNLO in assessing the effect of
higher order corrections and PDF and scale uncertainties on the theoretical
acceptance. In addition, we evaluate the error due to missing NLO electroweak
corrections and propose which MC generators and computational schemes should be
implemented to best simulate the events.Comment: 23 pages, 52 eps figures, LaTeX with JHEP3.cls, epsfig. Added a
reference, acknowledgment, and a few clarifying comments. 4/29: Changes in
references, minor rewordings and misprint corrections, and one new table
(Table 4) comparing CTEQ and MRST PDFs in the NNLO calculation. Version 6
adds email addresses and corrects one referenc
A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions
We present a new cascade-type microscopic simulation of nucleus-nucleus
collisions at RHIC energies. The basic elements are partons (quarks and gluons)
moving in 8N-dimensional phase space according to Poincare-covariant dynamics.
The parton-parton scattering cross sections used in the model are computed
within perturbative QCD in the tree-level approximation. The Q^2 dependence of
the structure functions is included by an implementation of the DGLAP mechanism
suitable for a cascade, so that the number of partons is not static, but varies
in space and time as the collision of two nuclei evolves. The resulting parton
distributions are presented, and meaningful comparisons with experimental data
are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
- …
