177 research outputs found

    Hyperglycaemia-induced resistance to Docetaxel is negated by metformin:a role for IGFBP-2

    Get PDF
    The incidence of many common cancers varies between different populations and appears to be affected by a Western lifestyle. Highly proliferative malignant cells require sufficient levels of nutrients for their anabolic activity. Therefore, targeting genes and pathways involved in metabolic pathways could yield future therapeutics. A common pathway implicated in energetic and nutritional requirements of a cell is the LKB1/AMPK pathway. Metformin is a widely studied anti-diabetic drug, which improves glycaemia in patients with type 2 diabetes by targeting this pathway. We investigated the effect of metformin on prostate cancer cell lines and evaluated its mechanism of action using DU145, LNCaP, PC3 and VCaP prostate cancer cell lines. Trypan blue dye-exclusion assay was used to assess levels of cell death. Western immunoblotting was used to determine the abundance of proteins. Insulin-like growth factor-binding protein-2 (IGFBP-2) andAMPKgenes were silenced using siRNA. Effects on cell morphology were visualised using microscopy.IGFBP-2gene expression was assessed using real-time RT-PCR. With DU145 and LNCaP cells metformin alone induced cell death, but this was reduced in hyperglycaemic conditions. Hyperglycaemia also reduced the sensitivity to Docetaxel, but this was countered by co-treatment with metformin. LKB1 was required for the activation of AMPK but was not essential to mediate the induction of cell death. An alternative pathway by which metformin exerted its action was through downregulation of IGFBP-2 in DU145 and LNCaP cells, independently of AMPK. This finding could have important implications in relation to therapeutic strategies in prostate cancer patients presenting with diabetes.</jats:p

    Appraising risk in active surveillance of localized prostate cancer

    Full text link
    Objectives: Men diagnosed with low-risk prostate cancer are typically eligible for active surveillance of their cancer, involving monitoring for cancer progression and making judgements about the risks of prostate cancer against those of active intervention. Our study examined how risk for prostate cancer is perceived and experienced by patients undergoing active surveillance with their clinicians, how risk is communicated in clinical consultations, and the implications for treatment and care. Method: Participants were nine patients and three clinicians from a university hospital urology clinic. A staged, qualitative, multi-method data collection approach was undertaken, comprising: observations of consultations; patient and clinician interviews; and patient surveys. The three data sets were analysed separately using thematic analysis and then integrated to give a comprehensive view of patient and clinician views. Results: Thirty data points (eight patient surveys; 10 observations of consultations between patients and clinicians; 10 patient interviews; and two clinician interviews) combined to create a detailed picture of how patients perceived and appraised risk, in three themes of “Making sense of risk”, “Talking about risk” and “Responding to risk”. Conclusion: Effective risk communication needs to be finely tuned and timed to individual patient's priorities and information requirements. A structured information exchange process that identifies patients' priorities, and details key moments in risk assessment, so that complexities of risk are discussed in ways that are meaningful to patients, may benefit patient care. These findings could inform the development of patient-centric risk assessment procedures and service delivery models in prostate cancer care more broadly

    Prostate cancer - evidence of exercise and nutrition trial (PrEvENT):Study protocol for a randomised controlled feasibility trial

    Get PDF
    Background: A growing body of observational evidence suggests that nutritional and physical activity interventions are associated with beneficial outcomes for men with prostate cancer, including brisk walking, lycopene intake, increased fruit and vegetable intake and reduced dairy consumption. However, randomised controlled trial data are limited. The ‘Prostate Cancer: Evidence of Exercise and Nutrition Trial’ investigates the feasibility of recruiting and randomising men diagnosed with localised prostate cancer and eligible for radical prostatectomy to interventions that modify nutrition and physical activity. The primary outcomes are randomisation rates and adherence to the interventions at 6 months following randomisation. The secondary outcomes are intervention tolerability, trial retention, change in prostate specific antigen level, change in diet, change in general physical activity levels, insulin-like growth factor levels, and a range of related outcomes, including quality of life measures. Methods/design: The trial is factorial, randomising men to both a physical activity (brisk walking or control) and nutritional (lycopene supplementation or increased fruit and vegetables with reduced dairy consumption or control) intervention. The trial has two phases: men are enrolled into a cohort study prior to radical prostatectomy, and then consented after radical prostatectomy into a randomised controlled trial. Data are collected at four time points (cohort baseline, true trial baseline and 3 and 6 months post-randomisation). Discussion: The Prostate Cancer: Evidence of Exercise and Nutrition Trial aims to determine whether men with localised prostate cancer who are scheduled for radical prostatectomy can be recruited into a cohort and subsequently randomised to a 6-month nutrition and physical activity intervention trial. If successful, this feasibility trial will inform a larger trial to investigate whether this population will gain clinical benefit from long-term nutritional and physical activity interventions post-surgery. Prostate Cancer: Evidence of Exercise and Nutrition Trial (PrEvENT) is registered on the ISRCTN registry, ref number ISRCTN99048944. Date of registration 17 November 2014.10 page(s

    Communicating risk in active surveillance of localised prostate cancer: A protocol for a qualitative study

    Full text link
    Introduction One in five men is likely to receive a diagnosis of prostate cancer (PCa) by the age of 85 years. Men diagnosed with low-risk PCa may be eligible for active surveillance (AS) to monitor their cancer to ensure that any changes are discovered and responded to in a timely way. Communication of risk in this context is more complicated than determining a numerical probability of risk, as patients wish to understand the implications of risk on their lives in concrete terms. Our study will examine how risk for PCa is perceived, experienced and communicated by patients using AS with their health professionals, and the implications for treatment and care. Methods and analysis This is a proof of concept study, testing out a multimethod, qualitative approach to data collection in the context of PCa for the first time in Australia. It is being conducted from November 2016 to December 2017 in an Australian university hospital urology clinic. Participants are 10 men with a diagnosis of localised PCa, who are using an AS protocol, and 5 health professionals who work with this patient group (eg, urologists and Pca nurses). Data will be collected using observations of patient consultations with health professionals, patient questionnaires and interviews, and interviews with healthcare professionals. Analysis will be conducted in two stages. First, observational data from consultations will be analysed thematically to encapsulate various dimensions of risk classification and consultation dialogue. Second, interview data will be coded to derive meaning in text and analysed thematically. Overarching themes will represent patient and health professional perspectives of risk communication. Ethics and dissemination Ethical approval for the study has been granted by Macquarie University Human Research Ethics Committee, approval 5201600638. Knowledge translation will be achieved through publications, reports and conference presentations to patients, families, clinicians and researchers

    Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells.

    Full text link
    Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Contemporary update of cancer control after radical prostatectomy in the UK

    Get PDF
    Despite a significant increase of the number of radical prostatectomies (RPs) to treat organ-confined prostate cancer, there is very limited documentation of its oncological outcome in the UK. Pathological stage distribution and changes of outcome have not been audited on a consistent basis. We present the results of a multicentre review of postoperative predictive variables and prostatic-specific antigen (PSA) recurrence after RP for clinically organ-confined disease. In all, 854 patient's notes were audited for staging parameters and follow-up data obtained. Patients with neoadjuvant and adjuvant treatment as well as patients with incomplete data and follow-up were excluded. Median follow-up was 52 months for the remaining 705 patients. The median PSA was 10 ng ml−1. A large migration towards lower PSA and stage was seen. This translated into improved PSA survival rates. Overall Kaplan–Meier PSA recurrence-free survival probability at 1, 3, 5 and 8 years was 0.83, 0.69, 0.60 and 0.48, respectively. The 5-year PSA recurrence-free survival probability for PSA ranges 20 ng ml−1 was 0.82, 0.73, 0.59 and 0.20, respectively (log rank, P<0.0001). PSA recurrence-free survival probabilities for pathological Gleason grade 2–4, 5 and 6, 7 and 8–10 at 5 years were 0.84, 0.66, 0.55 and 0.21, respectively (log rank, P<0.0001). Similarly, 5-year PSA recurrence-free survival probabilities for pathological stages T2a, T2b, T3a, T3b and T4 were 0.82, 0.78, 0.48, 0.23 and 0.12, respectively (log rank, P=0.0012). Oncological outcome after RP has improved over time in the UK. PSA recurrence-free survival estimates are less optimistic compared to quoted survival figures in the literature. Survival figures based on pathological stage and Gleason grade may serve to counsel patients postoperatively and to stratify patients better for adjuvant treatment

    Active monitoring, radical prostatectomy and radical radiotherapy in PSA-detected clinically localised prostate cancer : the ProtecT three-arm RCT

    Get PDF
    Background Prostate cancer is the most common cancer among men in the UK. Prostate-specific antigen testing followed by biopsy leads to overdetection, overtreatment as well as undertreatment of the disease. Evidence of treatment effectiveness has lacked because of the paucity of randomised controlled trials comparing conventional treatments. Objectives To evaluate the effectiveness of conventional treatments for localised prostate cancer (active monitoring, radical prostatectomy and radical radiotherapy) in men aged 50–69 years. Design A prospective, multicentre prostate-specific antigen testing programme followed by a randomised trial of treatment, with a comprehensive cohort follow-up. Setting Prostate-specific antigen testing in primary care and treatment in nine urology departments in the UK. Participants Between 2001 and 2009, 228,966 men aged 50–69 years received an invitation to attend an appointment for information about the Prostate testing for cancer and Treatment (ProtecT) study and a prostate-specific antigen test; 82,429 men were tested, 2664 were diagnosed with localised prostate cancer, 1643 agreed to randomisation to active monitoring (n = 545), radical prostatectomy (n = 553) or radical radiotherapy (n = 545) and 997 chose a treatment. Interventions The interventions were active monitoring, radical prostatectomy and radical radiotherapy. Trial primary outcome measure Definite or probable disease-specific mortality at the 10-year median follow-up in randomised participants. Secondary outcome measures Overall mortality, metastases, disease progression, treatment complications, resource utilisation and patient-reported outcomes. Results There were no statistically significant differences between the groups for 17 prostate cancer-specific (p = 0.48) and 169 all-cause (p = 0.87) deaths. Eight men died of prostate cancer in the active monitoring group (1.5 per 1000 person-years, 95% confidence interval 0.7 to 3.0); five died of prostate cancer in the radical prostatectomy group (0.9 per 1000 person-years, 95% confidence interval 0.4 to 2.2 per 1000 person years) and four died of prostate cancer in the radical radiotherapy group (0.7 per 1000 person-years, 95% confidence interval 0.3 to 2.0 per 1000 person years). More men developed metastases in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring, n = 33 (6.3 per 1000 person-years, 95% confidence interval 4.5 to 8.8); radical prostatectomy, n = 13 (2.4 per 1000 person-years, 95% confidence interval 1.4 to 4.2 per 1000 person years); and radical radiotherapy, n = 16 (3.0 per 1000 person-years, 95% confidence interval 1.9 to 4.9 per 1000 person-years; p = 0.004). There were higher rates of disease progression in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring (n = 112; 22.9 per 1000 person-years, 95% confidence interval 19.0 to 27.5 per 1000 person years); radical prostatectomy (n = 46; 8.9 per 1000 person-years, 95% confidence interval 6.7 to 11.9 per 1000 person-years); and radical radiotherapy (n = 46; 9.0 per 1000 person-years, 95% confidence interval 6.7 to 12.0 per 1000 person years; p < 0.001). Radical prostatectomy had the greatest impact on sexual function/urinary continence and remained worse than radical radiotherapy and active monitoring. Radical radiotherapy’s impact on sexual function was greatest at 6 months, but recovered somewhat in the majority of participants. Sexual and urinary function gradually declined in the active monitoring group. Bowel function was worse with radical radiotherapy at 6 months, but it recovered with the exception of bloody stools. Urinary voiding and nocturia worsened in the radical radiotherapy group at 6 months but recovered. Condition-specific quality-of-life effects mirrored functional changes. No differences in anxiety/depression or generic or cancer-related quality of life were found. At the National Institute for Health and Care Excellence threshold of £20,000 per quality-adjusted life-year, the probabilities that each arm was the most cost-effective option were 58% (radical radiotherapy), 32% (active monitoring) and 10% (radical prostatectomy). Limitations A single prostate-specific antigen test and transrectal ultrasound biopsies were used. There were very few non-white men in the trial. The majority of men had low- and intermediate-risk disease. Longer follow-up is needed. Conclusions At a median follow-up point of 10 years, prostate cancer-specific mortality was low, irrespective of the assigned treatment. Radical prostatectomy and radical radiotherapy reduced disease progression and metastases, but with side effects. Further work is needed to follow up participants at a median of 15 years. Trial registration Current Controlled Trials ISRCTN20141297
    corecore