251 research outputs found
Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities
Differential cross sections for Compton scattering from the deuteron were
measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at
nominal laboratory angles of , , and . Tagged
photons were scattered from liquid deuterium and detected in three NaI
spectrometers. By comparing the data with theoretical calculations in the
framework of a one-boson-exchange potential model, the sum and difference of
the isospin-averaged nucleon polarizabilities, and (in units of fm),
have been determined. By combining the latter with the global-averaged value
for and using the predictions of the Baldin sum rule for
the sum of the nucleon polarizabilities, we have obtained values for the
neutron electric and magnetic polarizabilities of (total) (model) and (total) (model), respectively.Comment: 4 pages, 2 figures, revtex. The text is substantially revised. The
cross sections are slightly different due to improvements in the analysi
Electromagnetic Polarizabilities of Nucleons bound in Ca, O and He
Differential cross sections for elastic scattering of photons have been
measured for Ca at energies of 58 and 74 MeV and for O and He
at 61 MeV, in the angular range from 45 to 150. Evidence is obtained
that there are no significant in-medium modifications of the electromagnetic
polarizabilities except for those originating from meson exchange currents.Comment: 20 pages including 5 Figure
Revealing histological and morphological features of female reproductive system in tree shrew (Tupaia belangeri)
The tree shrew has been used as a primate animal model in neuroscience studies but it has only rarely been employed in the study of reproductive systems. This is mainly because we know very little about the histological features of reproductive organs of the tree shrew. In this study, we have systematically analyzed the histology of reproductive organs of tree shrew, in comparison with human organs. The uterus of female tree shrew is uterus biomes unicolis, which is connected with an enveloped ovary through a thin fallopian tube. Histologically, the fallopian tube consists of folded mucosa, muscularis and serosa. Like other mammalian animals, the different developmental stages (primordial, primary, secondary and Graafian follicles) of ovarian follicles including inner oocyte and outer granulosa cells are embedded in the cortex. The luminal endometrium, middle muscular myometrium and serosa constitute the wall of uterus of tree shrew. The uterine endometrium contains simple columnar ciliated cells and goblet cells, and there are rich uterine glands in underlying stroma. Furthermore, these glands of tree shrew are round and smaller during anestrus, and become much longer when they are in estrus. The uterine endometrium in younger animals was less developed when compared to a mature tree shrew. Compared to human uterine endometrium, the histological features of tree shrew are very similar, indicating that it could potentially be good primate animal model for studying the diseases in reproductive system
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
The genetic basis of salinity tolerance traits in Arctic charr (Salvelinus alpinus)
<p>Abstract</p> <p>Background</p> <p>The capacity to maintain internal ion homeostasis amidst changing conditions is particularly important for teleost fishes whose reproductive cycle is dependent upon movement from freshwater to seawater. Although the physiology of seawater osmoregulation in mitochondria-rich cells of fish gill epithelium is well understood, less is known about the underlying causes of inter- and intraspecific variation in salinity tolerance. We used a genome-scan approach in Arctic charr (<it>Salvelinus alpinus</it>) to map quantitative trait loci (QTL) correlated with variation in four salinity tolerance performance traits and six body size traits. Comparative genomics approaches allowed us to infer whether allelic variation at candidate gene loci (e.g., <it>ATP1α1b, NKCC1, CFTR</it>, and <it>cldn10e</it>) could have underlain observed variation.</p> <p>Results</p> <p>Combined parental analyses yielded genome-wide significant QTL on linkage groups 8, 14 and 20 for salinity tolerance performance traits, and on 1, 19, 20 and 28 for body size traits. Several QTL exhibited chromosome-wide significance. Among the salinity tolerance performance QTL, trait co-localizations occurred on chromosomes 1, 4, 7, 18 and 20, while the greatest experimental variation was explained by QTL on chromosomes 20 (19.9%), 19 (14.2%), 4 (14.1%) and 12 (13.1%). Several QTL localized to linkage groups exhibiting homeologous affinities, and multiple QTL mapped to regions homologous with the positions of candidate gene loci in other teleosts. There was no gene × environment interaction among body size QTL and ambient salinity.</p> <p>Conclusions</p> <p>Variation in salinity tolerance capacity can be mapped to a subset of Arctic charr genomic regions that significantly influence performance in a seawater environment. The detection of QTL on linkage group 12 was consistent with the hypothesis that variation in salinity tolerance may be affected by allelic variation at the <it>ATP1α1b </it>locus. <it>IGF2 </it>may also affect salinity tolerance capacity as suggested by a genome-wide QTL on linkage group 19. The detection of salinity tolerance QTL in homeologous regions suggests that candidate loci duplicated from the salmonid-specific whole-genome duplication may have retained their function on both sets of homeologous chromosomes. Homologous affinities suggest that loci affecting salinity tolerance in Arctic charr may coincide with QTL for smoltification and salinity tolerance traits in rainbow trout. The effects of body size QTL appear to be independent of changes in ambient salinity.</p
Scale size estimation and flow pattern recognition around a magnetosheath jet
Transient enhancements in the dynamic pressure, so-called magnetosheath jets or simply jets, are abundantly found in the magnetosheath. They travel from the bow shock through the magnetosheath towards the magnetopause. On their way through the magnetosheath, jets disturb the ambient plasma. Multiple studies already investigated their scale size perpendicular to their propagation direction, and almost exclusively in a statistical manner. In this paper, we use multi-point measurements from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission to study the passage of a single jet. The method described here allows us to estimate the spatial distribution of the dynamic pressure within the jet. Furthermore, the size perpendicular to the propagation direction can be estimated for different cross sections.
In the jet event investigated here, both the dynamic pressure and the perpendicular size increase along the propagation axis from the front part towards the center of the jet and decrease again towards the rear part, but neither monotonically nor symmetrically. We obtain a maximum diameter in the perpendicular direction of about 1 RE and a dynamic pressure of about 6 nPa at the jet center.</p
- …
