8,507 research outputs found
Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis
Streptococcus uberis and Serratia marcescens are Gram-positive and Gram-negative bacteria, respectively, that induce clinical mastitis. Once initial host barrier systems have been breached by these pathogens, the innate immune system provides the next level of defense against these infectious agents. The innate immune response is characterized by the induction of pro-inflammatory cytokines, as well as increases in other accessory proteins that facilitate host recognition and elimination of the pathogens. The objective of the current study was to characterize the innate immune response during clinical mastitis elicited by these two important, yet less well-studied, Gram-positive and Gram-negative organisms. The pro-inflammatory cytokine response and changes in the levels of the innate immune accessory recognition proteins, soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), were studied. Decreased milk output, induction of a febrile response, and increased acute phase synthesis of LBP were all characteristic of the systemic response to intramammary infection with either organism. Infection with either bacteria similarly resulted in increased milk levels of IL-1, IL-8, IL-10, IL-12, IFN-, TNF-, sCD14, LBP, and the complement component, C5a. However, the duration of and/or maximal changes in the increased levels of these inflammatory markers were significantly different for several of the inflammatory parameters assayed. In particular, S. uberis infection was characterized by the sustained elevation of higher milk levels of IL-1, IL-10, IL-12, IFN-, and C5a, relative to S. marcescens infection. Together, these data demonstrate the variability of the innate immune response to two distinct mastitis pathogens
Optimal representation of our knowledge about seismic sources for PSHA in low deformation areas
characterization of the seismic sources, the definition of the attenuation law and the computation of the probabilistic seismic hazard. Our work is focus on the first two steps. Given that most active faults are not characterized well enough, in low deformation areas, seismic sources are generally defined as areal zones, delimited with finite boundary polygons, within which the geological features of active tectonics and the seismicity are deemed homogeneous. Besides the lack of data (e.g., narrow range of recorded magnitudes), the application of this representation generates different problems: 1) a large sensitivity of resulting hazard maps on the location of zone boundaries, while these boundaries are set by expert decision; 2) the zoning can not represent any variation in faulting mechanism; 3) the seismicity rates are distributed throughout the zones and we lose the location of the determinant information used for their calculation. We propose an exploratory study for an alternative procedure in area source modeling. This method allows to obtain a limit, and its uncertainties, between two zones, separated by two different seismic activity rates. Since we obtain this limit, we can recover the seismic activity rates for both zones.The important features for this developed method is the location and magnitude of the largest earthquakes. Given than the largest events are not recorded by instruments,we decide to use the Bakun and Wentworth method (1997) to better characterize the epicentral region and the magnitude of the instrumental earthquakes. Because of the unusual shape of the isoseismal lines of the 1909 Benavente event, we decided to apply this methodology to this event. The result show that the estimated epicenter (Kárnik, 1969) is within all the confidence-level. Because of the low magnitude estimation, we decide to test the sensibility of this method to the attenuation law. A new law is developed using a compilation of macroseismic reports and will be used to re-estimate the epicentral region and the magnitude of the 1909 Benavente event.The logarithmic trends of intensities with the median distance suggests a logarithmic form for the attenuation law. Then, this law will be used to re-evaluate the estimations of both epicentral region and magnitude of the 1909 Benavente event
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses
Classical simulation of measurement-based quantum computation on higher-genus surface-code states
We consider the efficiency of classically simulating measurement-based
quantum computation on surface-code states. We devise a method for calculating
the elements of the probability distribution for the classical output of the
quantum computation. The operational cost of this method is polynomial in the
size of the surface-code state, but in the worst case scales as in the
genus of the surface embedding the code. However, there are states in the
code space for which the simulation becomes efficient. In general, the
simulation cost is exponential in the entanglement contained in a certain
effective state, capturing the encoded state, the encoding and the local
post-measurement states. The same efficiencies hold, with additional
assumptions on the temporal order of measurements and on the tessellations of
the code surfaces, for the harder task of sampling from the distribution of the
computational output.Comment: 21 pages, 13 figure
The phase diagram of the lattice Calogero-Sutherland model
We introduce a {\it lattice} version of the Calogero Sutherland model adapted
to describe pairwise interacting steps with discrete positions on a
vicinal surface. The configurational free energy is obtained within a transfer
matrix method. The full phase diagram for attractive and for repulsive
interaction is deduced. For attraction, critical temperatures of faceting
transitions are found to depend on step density.Comment: latex PRBCalogSuth.tex, 6 files, 4 pages [SPEC-S00/900
The Real Combination Problem : Panpsychism, Micro-Subjects, and Emergence
Panpsychism harbors an unresolved tension, the seriousness of which has yet to be fully appreciated. I capture this tension as a dilemma, and offer panpsychists advice on how to resolve it. The dilemma, briefly, is as follows. Panpsychists are committed to the perspicuous explanation of macro-mentality in terms of micro-mentality. But panpsychists take the micro-material realm to feature not just mental properties, but also micro-subjects to whom these properties belong. Yet it is impossible to explain the constitution of a macro-subject (like one of us) in terms of the assembly of micro-subjects, for, I show, subjects cannot combine. Therefore the panpsychist explanatory project is derailed by the insistence that the world’s ultimate material constituents (ultimates) are subjects of experience. The panpsychist faces a choice of abandoning her explanatory project, or recanting the claim that the ultimates are subjects. This is the dilemma. I argue that the latter option is to be preferred. This needn’t constitute a wholesale abandonment of panpsychism, however, since panpsychists can maintain that the ultimates possess phenomenal qualities, despite not being subjects of those qualities. This proposal requires us to make sense of phenomenal qualities existing independently of experiencing subjects, a challenge I tackle in the penultimate section. The position eventually reached is a form of neutral monism, so another way to express the overall argument is to say that, keeping true to their philosophical motivations, panpsychists should really be neutral monists.Peer reviewedFinal Accepted Versio
Jahn-Teller versus quantum effects in the spin-orbital material LuVO3
We report on combined neutron and resonant x-ray scattering results,
identifying the nature of the spin-orbital ground state and magnetic
excitations in LuVO3 as driven by the orbital parameter. In particular, we
distinguish between models based on orbital Peierls dimerization, taken as a
signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor
of the latter. In order to solve this long-standing puzzle, polarized neutron
beams were employed as a prerequisite in order to solve details of the magnetic
structure, which allowed quantitative intensity-analysis of extended magnetic
excitation data sets. The results of this detailed study enabled us to draw
definite conclusions about classical vs quantum behavior of orbitals in this
system and to discard the previous claims about quantum effects dominating the
orbital physics of LuVO3 and similar systems.Comment: Phys. Rev. B 91, 161104(R) (2015
- …
